
Model-Based Calibration Toolbox™

CAGE User's Guide

R2017b



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Model-Based Calibration Toolbox™ CAGE User's Guide
© COPYRIGHT 2001–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Revision History
December 2001 Online only New for Version 1.0 (Release 12.1)
August 2002 Online only Revised for Version 1.1 (Release 13)
May 2003 Online only Revised for Version 2.0 (Release 13+)
June 2004 Online only Revised for Version 2.1 (Release 14)
June 2004 Online only Revised for Version 2.1.1 (Release 14+)
November 2005 Online only Revised for Version 3.0 (Release 14SP3+)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 3.4.1 (Release 2008a+)
October 2008 Online only Revised for Version 3.5 (Release 2008b)
March 2009 Online only Revised for Version 3.6 (Release 2009a)
September 2009 Online only Revised for Version 3.7 (Release 2009b)
March 2010 Online only Revised for Version 4.0 (Release 2010a)
September 2010 Online only Revised for Version 4.1 (Release 2010b)
April 2011 Online only Revised for Version 4.2 (Release 2011a)
September 2011 Online only Revised for Version 4.3 (Release 2011b)
March 2012 Online only Revised for Version 4.4 (Release 2012a)
September 2012 Online only Revised for Version 4.5 (Release 2012b)
March 2013 Online only Revised for Version 4.6 (Release 2013a)
September 2013 Online only Revised for Version 4.6.1 (Release 2013b)
March 2014 Online only Revised for Version 4.7 (Release 2014a)
October 2014 Online only Revised for Version 4.8 (Release 2014b)
March 2015 Online only Revised for Version 4.8.1 (Release 2015a)
September 2015 Online only Revised for Version 5.0 (Release 2015b)
March 2016 Online only Revised for Version 5.1 (Release 2016a)
September 2016 Online only Revised for Version 5.2 (Release 2016b)
March 2017 Online only Revised for Version 5.2.1 (Release 2017a)
September 2017 Online only Revised for Version 5.3 (Release 2017b)





Getting Started
1

What Is CAGE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Navigating CAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
How to Select CAGE Views . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
CAGE Views and Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

Variables and Models
2

Set Up Calibrations, Resume Work, or Find Calibration
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Import Models and Calibration Items Using CAGE Import
Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

Setting Up Variable Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Introducing the Variable Dictionary View . . . . . . . . . . . . . . . . 2-8
Importing and Exporting a Variable Dictionary . . . . . . . . . . 2-10
Adding and Editing Variable Items . . . . . . . . . . . . . . . . . . . . 2-11
Using the Variable Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Using Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14

Setting Up Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Introducing the Models View . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Importing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
Adding New Function Models . . . . . . . . . . . . . . . . . . . . . . . . 2-21
Renaming and Editing Models . . . . . . . . . . . . . . . . . . . . . . . 2-22

v

Contents



Creating and Viewing Composite Models in CAGE . . . . . . . . 2-26
What Are Composite Models? . . . . . . . . . . . . . . . . . . . . . . . . 2-26
Importing from the Model Browser . . . . . . . . . . . . . . . . . . . . 2-26
Combining Existing CAGE Models . . . . . . . . . . . . . . . . . . . . 2-29
Viewing Composite Model Properties . . . . . . . . . . . . . . . . . . 2-30

Model Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33
How To Open The Model Properties Dialog Box . . . . . . . . . . 2-33
Model Properties: General . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
Model Properties: Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35
Model Properties: Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36
Model Properties: Information . . . . . . . . . . . . . . . . . . . . . . . 2-37

Specifying Locations of Files . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38

Tables
3

Setting Up Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Creating Tables from a Model . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

Adding, Duplicating and Deleting Tables . . . . . . . . . . . . . . . . 3-9
Adding Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
Duplicating Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
Deleting Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10

Editing Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
About CAGE Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Viewing and Editing a Table . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
Filling a Table From a Model . . . . . . . . . . . . . . . . . . . . . . . . 3-14
Filling a Table by Extrapolation . . . . . . . . . . . . . . . . . . . . . . 3-15
Locking Table Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Editing the Graph of the Table . . . . . . . . . . . . . . . . . . . . . . . 3-17
Arithmetic Operations On Table Values . . . . . . . . . . . . . . . . 3-17

Filling a Single Table From a Model . . . . . . . . . . . . . . . . . . . . 3-20

Using the History Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23
Introducing the History Display . . . . . . . . . . . . . . . . . . . . . . 3-23

vi Contents



Resetting to Previous Table Versions . . . . . . . . . . . . . . . . . . 3-24
Comparing Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25

Calibration Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27
Introducing the Calibration Manager . . . . . . . . . . . . . . . . . . 3-27
Setting Up Tables from a Calibration File . . . . . . . . . . . . . . . 3-27
Setting Up Tables Manually . . . . . . . . . . . . . . . . . . . . . . . . . 3-31
Copying Table Data from Other Sources . . . . . . . . . . . . . . . . 3-31

Table Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32
Opening the Table Properties Dialog Box . . . . . . . . . . . . . . . 3-32
Table Properties: General Tab . . . . . . . . . . . . . . . . . . . . . . . 3-32
Table Properties: Table Values Precision Tab . . . . . . . . . . . . 3-32
Table Properties: Inputs Tab . . . . . . . . . . . . . . . . . . . . . . . . 3-38

Table Normalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39
About Normalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39
Introducing the Normalizer View . . . . . . . . . . . . . . . . . . . . . 3-40
Editing Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-42
Input/Output Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-43
Normalizer Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-43
Breakpoint Spacing Display . . . . . . . . . . . . . . . . . . . . . . . . . 3-44

Inverting a Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-47
Overview of Inverting Tables . . . . . . . . . . . . . . . . . . . . . . . . 3-47
Inverting One-Dimensional Tables . . . . . . . . . . . . . . . . . . . . 3-49
Inverting Two-Dimensional Tables . . . . . . . . . . . . . . . . . . . . 3-51

Importing and Exporting Calibrations . . . . . . . . . . . . . . . . . . 3-52
Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-52
Importing Calibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-52
Exporting Calibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-54

Feature Calibrations
4

About Feature Calibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
What Are Feature Calibrations? . . . . . . . . . . . . . . . . . . . . . . . 4-2
Procedure for Feature Calibration . . . . . . . . . . . . . . . . . . . . . 4-2
How CAGE Optimizes Normalizer Breakpoints . . . . . . . . . . . 4-5

vii



How CAGE Optimizes Table Values . . . . . . . . . . . . . . . . . . . . 4-9

Set Up a Feature Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
Procedure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
Adding a Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12
What Is a Strategy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12
Working With Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12

Import a Strategy from Simulink . . . . . . . . . . . . . . . . . . . . . . 4-15
Import a Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
Model Structure and Strategy Hierarchy . . . . . . . . . . . . . . . 4-16
Tables, Normalizers, and Constants . . . . . . . . . . . . . . . . . . . 4-16
Block Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18
Loop Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19
Importing Older Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19
Constructing a Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20
Exporting Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23

Optimize Table Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
Filling and Optimizing Table Values . . . . . . . . . . . . . . . . . . . 4-24
Saving and Reusing Feature Fill Settings . . . . . . . . . . . . . . . 4-31
Filling Tables by Extrapolation . . . . . . . . . . . . . . . . . . . . . . . 4-32

Initialize Tables and Normalizers . . . . . . . . . . . . . . . . . . . . . . 4-34
Initializing a Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34
Initializing Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-36
Initializing Table Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-36

Optimize Normalizer Breakpoints . . . . . . . . . . . . . . . . . . . . . 4-38
Overview of Calibrating Normalizers . . . . . . . . . . . . . . . . . . 4-38
Optimizing Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-39
Example of Breakpoint Optimization . . . . . . . . . . . . . . . . . . 4-41
Viewing the Normalizer Comparison Pane . . . . . . . . . . . . . . 4-43

Compare the Strategy and the Model . . . . . . . . . . . . . . . . . . . 4-46
Display the Strategy and the Model . . . . . . . . . . . . . . . . . . . 4-46
Display the Error Between the Strategy and the Model . . . . 4-48

viii Contents



Tradeoff Calibrations
5

Performing a Tradeoff Calibration . . . . . . . . . . . . . . . . . . . . . . 5-2
Procedure for Filling Tables in a Tradeoff Calibration . . . . . . 5-2
Automated Tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Setting Up a Tradeoff Calibration . . . . . . . . . . . . . . . . . . . . . . . 5-7
Overview of Setting Up a Tradeoff . . . . . . . . . . . . . . . . . . . . . 5-7
Adding a Tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Adding Tables to a Tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Displaying Models in Tradeoff . . . . . . . . . . . . . . . . . . . . . . . 5-10

Filling Tables in a Tradeoff Calibration . . . . . . . . . . . . . . . . . 5-12

Setting Values of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
Setting Values for Individual Operating Points . . . . . . . . . . . 5-14
Setting Values for All Operating Points . . . . . . . . . . . . . . . . 5-15

Choosing a Table Value at a Specific Operating Point . . . . . 5-16
Find Maximum, Minimum, or Turning Point of Graphs . . . . 5-17
Using Zoom Controls on the Graphs . . . . . . . . . . . . . . . . . . . 5-18
Configuring Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Controlling Table Values, Extrapolation, and Locks . . . . . . . 5-20
Tradeoff Table Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21

Controlling Table Extrapolation Regions . . . . . . . . . . . . . . . 5-23
What Are Regions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23
Defining a Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24
Clearing a Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24

Point-by-Point Model Tradeoffs . . . . . . . . . . . . . . . . . . . . . . . 5-25
What Is A Point-by-Point Model Tradeoff? . . . . . . . . . . . . . . 5-25
Adding a Point-by-Point Model Tradeoff . . . . . . . . . . . . . . . . 5-26
Calibrating Using a Point-by-Point Model Tradeoff . . . . . . . . 5-28

ix



Optimization Setup
6

Using Optimization in CAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Overview of Optimization in CAGE . . . . . . . . . . . . . . . . . . . . 6-2
Parallel Computing in Optimization . . . . . . . . . . . . . . . . . . . . 6-3
Optimization Problems You Can Solve with CAGE . . . . . . . . . 6-3

Create an Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
Setting Up Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
Creating Optimizations from Models . . . . . . . . . . . . . . . . . . . 6-8
Tools for Common Optimization Tasks . . . . . . . . . . . . . . . . . 6-11
Optimization Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12

Set Up Sum Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21
Overview of Setting Up Sum Optimizations . . . . . . . . . . . . . 6-21
Example Problem to Demonstrate Controls for Sum

Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23
Using Variable Values Length Controls . . . . . . . . . . . . . . . . 6-24
Algorithm Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-27
Using Application Point Sets . . . . . . . . . . . . . . . . . . . . . . . . 6-30

Set Up Multiobjective Optimizations . . . . . . . . . . . . . . . . . . . 6-32
Overview of Setting Up Multiobjective Optimizations . . . . . . 6-32
About the gamultiobj Algorithm . . . . . . . . . . . . . . . . . . . . . . 6-33
About the NBI (Normal Boundary Intersection) Algorithm . . 6-33

Set Up Modal Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . 6-37
What Is Modal Optimization? . . . . . . . . . . . . . . . . . . . . . . . . 6-37
Workflow for Modal Optimization . . . . . . . . . . . . . . . . . . . . . 6-37
Creating Modal Optimizations . . . . . . . . . . . . . . . . . . . . . . . 6-38
Adding Extra Objectives to Modal Optimizations . . . . . . . . . 6-40

Set Up MultiStart Optimizations . . . . . . . . . . . . . . . . . . . . . . . 6-41
What Is MultiStart Optimization? . . . . . . . . . . . . . . . . . . . . 6-41
Creating a MultiStart Optimization . . . . . . . . . . . . . . . . . . . 6-41

Edit Variable Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-44
What Are Variable Values? . . . . . . . . . . . . . . . . . . . . . . . . . . 6-44
Define Variables Manually . . . . . . . . . . . . . . . . . . . . . . . . . . 6-44
Import from a Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-46
Import from Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-47

x Contents



Import from Table Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-50
Import from Table Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-51

Edit Objectives and Constraints . . . . . . . . . . . . . . . . . . . . . . . 6-52
Overview of Objectives and Constraints . . . . . . . . . . . . . . . . 6-52
Edit Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-53
Edit Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-55

Run Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-60

Edit Optimization Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 6-62
Overview of the Optimization Parameters Dialog Box . . . . . . 6-62
foptcon Optimization Parameters . . . . . . . . . . . . . . . . . . . . . 6-62
NBI Optimization Parameters . . . . . . . . . . . . . . . . . . . . . . . 6-64
GA Optimization Parameters . . . . . . . . . . . . . . . . . . . . . . . . 6-65
Pattern Search Optimization Parameters . . . . . . . . . . . . . . . 6-66
Modal Optimization Parameters . . . . . . . . . . . . . . . . . . . . . . 6-68
MultiStart Optimization Parameters . . . . . . . . . . . . . . . . . . 6-68
gamultiobj Optimization Parameters . . . . . . . . . . . . . . . . . . 6-69
Scale Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-70

Optimization Analysis
7

Using Optimization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Choosing Acceptable Solutions . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Create Sum Optimization from Point Optimization Output . . 7-4
Exporting to a Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
Custom Fill Function Structure . . . . . . . . . . . . . . . . . . . . . . . 7-6

Filling Tables from Optimization Results . . . . . . . . . . . . . . . . 7-9
Table Filling from Optimization Results Wizard . . . . . . . . . . . 7-9
Table Filling When Optimization Operating Point Inputs Differ

from Table Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14
Filling Tables Via Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . 7-16

Viewing Your Optimization Results . . . . . . . . . . . . . . . . . . . . 7-18
Navigating the Optimization Output View . . . . . . . . . . . . . . 7-18
Solution Slice: Optimization Results Table . . . . . . . . . . . . . . 7-20
Solution Slice: Results Surface and Results Contour Views . . 7-21

xi



Objective Slice Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-26
Objective Contour Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27
Constraint Slice Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27
Constraint Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . 7-29

Analyzing Point Optimization Output . . . . . . . . . . . . . . . . . . 7-36
Process for Analyzing Optimization Results . . . . . . . . . . . . . 7-36
Detecting Local Optima . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-38
Investigating Early Termination of Optimization . . . . . . . . . 7-42
Handling Flat Optima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-47

Tools for Optimizations with Multiple Solutions . . . . . . . . . 7-51
Analyzing Modal, MultiStart, and Multiobjective

Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-51
Pareto Slice Table View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-51
Selected Solution Slice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-53
Exporting Selected Solutions . . . . . . . . . . . . . . . . . . . . . . . . 7-55

Analyzing Modal Optimization Results . . . . . . . . . . . . . . . . . 7-57
Viewing and Selecting Modal Optimization Results . . . . . . . 7-57
Creating Sum Optimizations from Modal Optimizations . . . . 7-60
Filling Tables for Operating Modes . . . . . . . . . . . . . . . . . . . . 7-61

Analyzing MultiStart Optimization Results . . . . . . . . . . . . . . 7-63
Viewing and Selecting MultiStart Results . . . . . . . . . . . . . . . 7-63
Creating Sum Optimizations from MultiStart

Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-65

Analyzing Multiobjective Optimization Results . . . . . . . . . . 7-67
Pareto Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-67
Weighted Objective Pareto Slice . . . . . . . . . . . . . . . . . . . . . . 7-68
Multiobjective Output Messages . . . . . . . . . . . . . . . . . . . . . . 7-71

Interpreting Sum Optimization Output . . . . . . . . . . . . . . . . . 7-73
Operating Point Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-73
Optimization Results Table . . . . . . . . . . . . . . . . . . . . . . . . . . 7-74
Objective Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-75
Objective Contour Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-76
Constraint Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-76
Constraint Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-77
Table Gradient Constraint Output . . . . . . . . . . . . . . . . . . . . 7-78

xii Contents



Writing User-Defined Optimizations
8

User-Defined Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
Introducing User-Defined Optimization . . . . . . . . . . . . . . . . . 8-2
Implementing Your Optimization Algorithm in CAGE . . . . . . 8-3
About the Worked Example Optimization Algorithm . . . . . . . 8-5
Checking User-Defined Optimizations into CAGE . . . . . . . . . 8-7

Example User-Defined Optimization . . . . . . . . . . . . . . . . . . . . 8-9
Example Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9
Using the Worked Example Optimization . . . . . . . . . . . . . . . 8-10

Creating an Optimization from Your Own Algorithm . . . . . 8-16
Process Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-16
Step 1: Verify the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 8-17
Step 2: Create a CAGE Optimization Function . . . . . . . . . . . 8-19
Step 3: Define the Optimization Options . . . . . . . . . . . . . . . . 8-20
Step 4: Add the Algorithm to the Optimization Function . . . . 8-23
Step 5: Register Your Optimization Function with CAGE . . . 8-26
Step 6: Verify Your New Optimization . . . . . . . . . . . . . . . . . 8-27

Optimization Function Reference . . . . . . . . . . . . . . . . . . . . . . 8-31
Methods of cgoptimoptions . . . . . . . . . . . . . . . . . . . . . . . . . . 8-31
Methods of cgoptimstore . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-33

Functions — Alphabetical List . . . . . . . . . . . . . . . . . . . . . . . . . 8-35

Data Sets
9

Use Data Sets Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2

Set Up Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
How to Set Up Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
Importing Experimental Data from File . . . . . . . . . . . . . . . . . 9-5
Importing Data from the Model Browser . . . . . . . . . . . . . . . . . 9-7
Importing Data from a Table in Your Session . . . . . . . . . . . . . 9-8
Merging Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8

xiii



Specifying the Factors Manually . . . . . . . . . . . . . . . . . . . . . . . 9-9
Creating a Factor from the Error Between Factors . . . . . . . . 9-12

View Data in a Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13

Plot Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15

Use Color to Display Information . . . . . . . . . . . . . . . . . . . . . . 9-18

Link Factors in a Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-22

Assign Columns of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-24

Manipulate Models in Data Set View . . . . . . . . . . . . . . . . . . . 9-25

Fill Tables from Experimental Data . . . . . . . . . . . . . . . . . . . . 9-26
How to Fill Tables from Experimental Data . . . . . . . . . . . . . 9-26
Creating Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-29

Export Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-32
Exporting Data to the Model Browser . . . . . . . . . . . . . . . . . . 9-32
Exporting Data to File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-32

Surface Viewer
10

The Surface Viewer in CAGE . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

Viewing a Model or Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3

Setting Variable Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5
Displaying Point-by-Point Models in the Surface Viewer . . . . 10-6

Displaying the Model or Feature . . . . . . . . . . . . . . . . . . . . . . . 10-7
Using Display Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7
Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8
Contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10
Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11
Single Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11
Multiline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-12

xiv Contents



Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-12

Making Movies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-14

Displaying Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-16
Introducing Error Displays . . . . . . . . . . . . . . . . . . . . . . . . . 10-16
Feature Error Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-16
Prediction Error Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-16

Printing and Exporting the Display . . . . . . . . . . . . . . . . . . . 10-18

xv





Getting Started

This section includes the following topics:

• “What Is CAGE?” on page 1-2
• “Navigating CAGE” on page 1-4

1



What Is CAGE?
Model-Based Calibration Toolbox contains tools for design of experiment, statistical
modeling, and calibration of complex systems. See “Model-Based Calibration Toolbox
Product Description”. The toolbox has two main user interfaces:

• Model Browser for design of experiment and statistical modeling
• CAGE Browser for analytical calibration

CAGE (CAlibration GEneration) is an easy-to-use graphical interface for calibrating
lookup tables for your electronic control unit (ECU).

As engines get more complicated, and models of engine behavior more intricate, it is
increasingly difficult to rely on intuition alone to calibrate lookup tables. CAGE provides
analytical methods for calibrating lookup tables.

CAGE uses models of the engine control subsystems to calibrate lookup tables. With
CAGE you fill and optimize lookup tables in existing ECU software using models from
the Model Browser part of the Model-Based Calibration Toolbox product. From these
models, CAGE builds steady-state ECU calibrations.

CAGE also compares lookup tables directly to experimental data for validation.

Feature Calibration

A feature calibration compares a model of an estimated signal with a lookup table (or
algebraic collection of tables) that estimates the same signal in the ECU. CAGE finds the
optimum calibration for the lookup table(s).

For example, a typical engine subsystem controls the spark angle to produce the peak
torque; that is, the Maximum Brake Torque (MBT) spark. Using the Model Browser, you
can build a statistically sound model of MBT spark, over a range of engine speeds and
relative air charges, or loads. Use the feature calibration to fill a lookup table by
comparing the table to the model.

Tradeoff Calibration

A tradeoff calibration fills lookup tables by comparing models of different engine
characteristics at key operating points.

For example, there are several models of important engine characteristics, such as torque
and nitrous oxides (NOX) emissions. Both models depend on the spark angle. At a

1 Getting Started

1-2



particular operating point, a slight reduction of torque can result in a dramatic reduction
of NOX emissions. Thus, the calibrator uses the value of the spark angle that gives this
reduction in NOX emissions instead of the spark angle that generates maximum torque.

Optimization

CAGE can optimize calibrations with reference to models, including single- and multi-
objective optimizations, sum optimizations, user-defined optimizations, and automated
tradeoff.

Comparing Calibrations to Data

You can compare your calibrations to experimental data for validation.

For example, after completing a calibration, you can import experimental data from a
spreadsheet. You can use CAGE to compare your calibration to the data.

Starting the CAGE Browser

To start the application, type

cage

at the MATLAB® command prompt.

 What Is CAGE?

1-3



Navigating CAGE
In this section...
“How to Select CAGE Views” on page 1-4
“CAGE Views and Processes” on page 1-6

How to Select CAGE Views

The view of CAGE depends on two things:

• Which button you select in the Processes and Data Objects panes
• The item you highlight in the tree display

When you open CAGE, it looks like this.

1 Getting Started

1-4



Display AreaTree Display

Data Sets

Models

Tables

Variable
Dictionary

Optimization

Tradeoff
Calibration

Feature
Calibration
(selected)

 Navigating CAGE

1-5



CAGE includes a Processes pane and a Data Objects pane to help you identify the type
of calibration you want to do and the data objects that you intend to use. Use the buttons
in these panes to navigate between the different sections of functionality in CAGE.

CAGE Views and Processes

The Processes pane has three buttons:

• Feature shows the Feature view, with the tables and strategies that are associated
with that feature. See “Working With Features” on page 4-12.

A feature is a strategy (or collection of tables) and a model used to calibrate those
tables. In the Feature view, you can fill tables by comparing a strategy to a model.
See “Feature Calibration”. You can import existing strategies or construct new ones
using Simulink® software from the feature view.

From the feature node in the tree display, you can access the Surface Viewer to
examine the strategy or model or both. See “The Surface Viewer in CAGE” on page
10-2.

• Tradeoff shows the Tradeoff view, with a list of the tables and models to display.
Here you can see graphically the effects of manually altering variables to trade off
different objectives (such as maximizing torque while minimizing emissions). At the
tradeoff node, you can calibrate table values to achieve the best compromise between
competing objectives. You can calibrate using single or multimodel tradeoffs. See
“Tradeoff Calibration”. You can also use the optimization functionality of CAGE to
run automated tradeoffs, described in the Optimization section (see below).

• Optimization shows the Optimization view. From here you can set up and run
optimizations, including automated tradeoffs. There are standard routines available
and also templates provided so you can write your own optimization routines. You can
find full instructions in “Optimization Setup”.

You can reach the Calibration Manager from the Feature and Tradeoff process
views, and from the Tables view, but not Optimization. In the Calibration Manager
you can set up the size and contents of tables (manually or using existing calibration
files) and edit the precision used for values (to match the kind of electronic control
unit you are going to use). See “Calibration Manager” on page 3-27.

1 Getting Started

1-6



The Data Objects pane has four buttons:

• Variable Dictionary stores all the variables, constants, and formulas in your
session. Here you can view, add, and edit any variables in any part of your session.
See “Setting Up Variable Items” on page 2-8.

• Tables enables you to see all the tables and normalizers in your session. You can also
calibrate tables manually here if you want. You can add and delete tables from the
project. From any table display (here, or in other views) you can access the History
Display to manage changes in your tables and normalizers. You can use the History
Display to reverse changes. See “Setting Up Tables” on page 3-2.

• Models stores all the models in your session. Here you can view a graphical display of
these models, including a diagram of the model's input structure. This is useful
because a model can have other models as inputs. You can change the inputs here.
For example, you can change your model's input Spark to be connected to a model for
Spark rather than to the variable Spark. You can also access the surface viewer here
to examine models. See “Setting Up Models” on page 2-16 and “The Surface Viewer
in CAGE” on page 10-2.

• Data Sets enables you to evaluate your models and features over a custom set of
input values. Here you can create and edit a set of input values and view several
models or features evaluated at these points. You can compare your tables and models
with experimental data to validate your calibrations. You can also fill tables directly
from experimental data by loading the experimental data as a new data set. See “Use
Data Sets Views” on page 9-2.

 Navigating CAGE

1-7



1 Getting Started

1-8



Variables and Models

The following sections describe how to set up variables and models before performing
calibrations.

• “Set Up Calibrations, Resume Work, or Find Calibration Examples” on page 2-2
• “Import Models and Calibration Items Using CAGE Import Tool” on page 2-5
• “Setting Up Variable Items” on page 2-8
• “Setting Up Models” on page 2-16
• “Creating and Viewing Composite Models in CAGE” on page 2-26
• “Model Properties” on page 2-33
• “Specifying Locations of Files” on page 2-38

2



Set Up Calibrations, Resume Work, or Find Calibration
Examples

When you open MBC Optimization app, the home page helps you get started or resume
work faster by accessing frequent tasks, recent projects, and featured examples.

• Get started by using the buttons in the right pane for common calibration tasks:
import models; set up optimizations, tables, feature strategies, or data sets;. or export
tables

• Resume work by opening projects from the Recent projects list.
• Open case study examples from the Case Studies list.
• View a summary of items in your project. To open other views, click Browse Project.
• From other calibration views, to return to the home page, click the Home toolbar

button or select File > Home.

2 Variables and Models

2-2



See Also

Related Examples
• “Import Models and Calibration Items Using CAGE Import Tool” on page 2-5
• “Create an Optimization” on page 6-7
• “Creating Tables from a Model” on page 3-4
• “Setting Up Models” on page 2-16

 See Also

2-3



• “Set Up a Feature Calibration” on page 4-11
• “Set Up Designs and Models, Resume Work, or Find Engine Modeling Examples”
• “Engine Calibration Applications”

2 Variables and Models

2-4



Import Models and Calibration Items Using CAGE Import Tool
You can use the CAGE Import Tool to select items to import from any Model-Based
Calibration Toolbox project file produced in CAGE or the Model Browser (.mat or .cag).
This can greatly simplify setting up new projects, and also making changes to existing
projects, for example to make use of new models in an existing optimization and
calibration.

You can import Model Browser models from any project file or direct from the Model
Browser when it is open. You can import the following CAGE items from any CAGE
project: models (including feature and function models), variables, normalizers, tables,
features, optimizations, datasets and tradeoffs.

You can replace suitable items in your current CAGE project with imported items. You
can see if an item is replaceable in the Import dialog, where the Replace action becomes
available.

Note that Model Browser models (but not CAGE models) must have exactly the same
input names as the CAGE model you want to replace. You can replace models, variables,
normalizers, tables and features. You cannot replace optimizations, datasets or tradeoffs.
You cannot replace tables used in tradeoffs with tables of a different size.

To use the CAGE Import Tool:

1 On the CAGE home page, click Import Models. Alternatively, select File > Import
From Project.

• If it is not already open, the Model Browser opens. Use the Model browser to open
a project.

The CAGE Import Tool appears.
2 You can choose a project file or import directly from the Model Browser if it is open.

• If the Model Browser is open, the list is automatically populated with a list of
available items in the open project.

• To import from a file, click the Import from project file button.

A file browser dialog opens. Locate the desired file and click Open.
3 The CAGE Import Tool displays the available items. Select the items you want to

import from the list. Press Ctrl+A to select all items, or Ctrl+click or Shift+click to
select multiple items in the list.

 Import Models and Calibration Items Using CAGE Import Tool

2-5



You can use the Find and Type controls to filter the item list:

• If you are importing from a Model Browser project you can select Response,
Point-by-point, Datum or Response Feature from the Type list to display a
single model type only.

• If you are importing from a CAGE project you can select Variable, Model,
Normalizer, Table, Feature, Optimization, Dataset, or Tradeoff from the
CAGE items in the Type list. For models the Subtype column displays whether
a model item is an MBC model, function model or feature model.

• Enter text in the Find edit box to find particular item names. You can also select
the box to Match case

4 Click the Import Selected Items button.
5 The CAGE Browser opens displaying the imported models.

2 Variables and Models

2-6



6 When you have finished importing items, in the CAGE Import Tool, click Close..

See also:

• “Importing and Exporting a Variable Dictionary” on page 2-10
• “Import Exported Models File” on page 2-19

See Also

Related Examples
• “Set Up Calibrations, Resume Work, or Find Calibration Examples” on page 2-2

 See Also

2-7



Setting Up Variable Items
In this section...
“Introducing the Variable Dictionary View” on page 2-8
“Importing and Exporting a Variable Dictionary” on page 2-10
“Adding and Editing Variable Items” on page 2-11
“Using the Variable Menu” on page 2-13
“Using Aliases” on page 2-14

Introducing the Variable Dictionary View

The Variable Dictionary is a store for all the variables, constants, and formulae in your
session.

To view or edit the items in the Variable Dictionary, click the button, shown, in the Data
Objects pane.

Selecting the Variable Dictionary view displays the variables, constants, and formulae
in the current project.

Note that if you have existing CAGE projects you can use the “Import Models and
Calibration Items Using CAGE Import Tool” on page 2-5 to import variable items and
other CAGE items directly from other projects.

Following is an example of the Variable Dictionary view.

2 Variables and Models

2-8



Edit boxes to change the settings of the
selected constant, variable, or formula

List of all the constants, variables, and formulas in the project

 Setting Up Variable Items

2-9



The upper pane shows a list of all the current variables, constants, and formulas. The
lower pane displays edit boxes so you can specify the settings of the selected variable,
constant, or formula.

Different Variable Dictionary Items

• Variables — standard items that feed into models, strategies and tables, and define
ranges for these items

• Constant — used for inputs that you do not want to change
• Formulae — used when you want a variable item to depend on another

Importing and Exporting a Variable Dictionary

A variable dictionary contains all the variable items for your calibrations. You can set up
your variable dictionary once, and use it in many calibrations.

If you import a model, it has variables associated with it, in which case you might not
have to import a variable dictionary.

Importing a Variable Dictionary

To import a dictionary of variables from an .xml file,

1 Select File > Import > Variable Dictionary.
2 Select the correct dictionary file.

Note you can also import variable items directly from other CAGE projects using the
“Import Models and Calibration Items Using CAGE Import Tool” on page 2-5.

Exporting a Variable Dictionary

After setting up a variable dictionary, you can save the dictionary for use in many
different calibrations.

To export a dictionary of variables to an .xml file,

1 Select File > Export > Variable Dictionary.
2 Select a suitable name for the dictionary file.

2 Variables and Models

2-10



See Also

• “Setting Up Variable Items” on page 2-8
• “Adding and Editing Variable Items” on page 2-11

Adding and Editing Variable Items

To add variable items you can use the Variable Dictionary toolbar, shown, or you can
select items from the File -> New -> Variable Items menu.

Add a variable Add a variable Add a variable

Adding a Variable

To add a variable,

1 Select File > New > Variable Item > Variable.

A new variable is added to the variable dictionary.
2 Select Edit > Rename to alter the name of the variable.
3 Specify the Minimum and Maximum values of the variable in the edit boxes in the

lower pane.
4 Specify the value of the Set Point in the edit box.

Using Set Points in the Variable Dictionary

The set point of a variable is a point that is of particular interest in the range of the
variable. You can edit set points in the variable dictionary or the models view.

For example, for the air/fuel ratio variable, AFR, the range of values is typically 11 to 17.
However, whenever only one value of AFR is required, it is preferable to choose 14.3, the
stoichiometric constant, over any other value. So enter 14.3 as the Set Point.

CAGE uses the set point as the default value of the variable wherever one value from the
variable range is required. For instance, CAGE uses the set point when evaluating a
model over the range of a different variable.

 Setting Up Variable Items

2-11



For example, a simple model for torque depends on AFR, engine speed, and relative air
charge. CAGE uses the set point of AFR when it calculates the values of the model over
the ranges of the engine speed and relative air charge.

Adding a Constant

To add a constant,

1 Select File > New > Variable Item > Constant.

A new constant is added to the variable dictionary.
2 Select Edit > Rename to alter the name of the constant.
3 Specify the value of the constant in the Set Point edit box, in the lower pane.

Adding Formulas

You might want to add a formula to your session. For example, the formula l =
afr

stoich

where afr is the air/fuel ratio and stoich is the stoichiometric constant.

To add a formula,

1 Select File > New > Variable Item > Formula.

The Add Formula dialog box appears.
2 In the dialog, enter the right side of the formula, as in this example afr/stoich.

Note it is normal to create inputs to a formula first. If you do not use pre-existing
variable names then those inputs are created, so be careful to get input names
exactly correct. Follow these requirements for a valid formula string:

• A formula can only have exactly one variable input
• No formulae as inputs
• Not circular (i.e. self referencing)
• Must not error when evaluated
• Must produce a vector for a vector input
• Must be invertible

Click OK and a new formula is added to the variable dictionary.

2 Variables and Models

2-12



3 Select Edit -> Rename to alter the name of the formula.

See Also

• “Setting Up Variable Items” on page 2-8
• “Adding and Editing Variable Items” on page 2-11

Using the Variable Menu

The Variable menu in the variable dictionary enables you to alter variable items. These
choices are also available in the right-click context menu on the list view.

Change item to:

• Alias

Changes the selected item to be an alias of another item in the current project. For
example, if you have two variables, engine_speed and n, you can change n to be an
alias of engine_speed, with its maximum and minimum values. For more
information, see the next section, “Using Aliases” on page 2-14.

• Formula

Changes a variable or constant into a formula. You have to define the right side of the
formula, and you can select the check box to calculate the range.

• Constant

Changes a variable or formula into a constant. The value of the constant is the set
point of the old item.

• Variable

Changes a constant or formula into a variable. The range is from 0 to twice the
constant's value (negative values have a maximum of 0).

See Also

• “Setting Up Variable Items” on page 2-8
• “Using Aliases” on page 2-14

 Setting Up Variable Items

2-13



Using Aliases

The variable dictionary enables you to use the same set of variables, constants, and
formulas with many different models and calibrations.

Why Use Aliases?

It is possible that in one model or strategy the engine speed has been defined as N, and in
another it has been defined as rpm. The alias function enables you to automatically link
inputs with various names to a single CAGE variable when you import models and
strategies.

Creating an Alias

For example, in a variable dictionary there are two variables:

• N, with a range of 500 to 6500
• rpm, with a range of 2500 to 3500

To set rpm to be an alias of N,

1 Highlight the variable rpm.
2 Select Variable > Change item to > Alias.
3 In the dialog, choose N from the list.

This eliminates the variable rpm from your variable dictionary, and every model and
calibration that refers to rpm now refers to N instead.

Note If N is made an alias of rpm in the preceding example, the range of N is restricted to
the range of rpm, 2500 to 3500.

You can also add aliases to existing items by entering a list of names in the Alias edit
box.

See Also

• “Setting Up Variable Items” on page 2-8

2 Variables and Models

2-14



See Also

Related Examples
• “Set Up Calibrations, Resume Work, or Find Calibration Examples” on page 2-2

 See Also

2-15



Setting Up Models
In this section...
“Introducing the Models View” on page 2-16
“Importing Models” on page 2-19
“Adding New Function Models” on page 2-21
“Renaming and Editing Models” on page 2-22

Introducing the Models View

CAGE generally calibrates lookup tables by reference to models.

To import models, see “Import Models and Calibration Items Using CAGE Import Tool”
on page 2-5.

The Models view is a storage place for all the models in your session.

To view and edit the models in your session, select Models by clicking the button shown
in the Data Objects pane.

The Models view displays the following:

• A list of all the models in the current project.
• The model connections. That is, which constants, variables, and models are inputs to

the selected model. You can use the View menu or the right-click context menu on the
graph to zoom in and out, zoom to fit, and reset.

• An image of the response surface of the selected model; you can select factors to
display. Use the View menu to choose between:

• No Constraint Display — Shows entire model surface.
• Show Constraint — Areas outside the boundary constraint model (if any) are

yellow.
• Clip to Constraint — The surface is only shown within the boundary constraint

model.

2 Variables and Models

2-16



View > Edit Input Set Points opens a dialog box where you can edit the set points
of your model variables. This setting alters the model display and also any
calculations involving the set points throughout CAGE. Altering this setting is the
same as altering the set points in the Variable Dictionary, see “Using Set Points in
the Variable Dictionary” on page 2-11.

Following is an example of the Models display.

 Setting Up Models

2-17



List of the current models

Model connections display Model display

The icons in the Models list indicate the type of model, as listed in the Type column. As
shown in the following illustration, a model can be a Model Browser statistical model, the
boundary of a model, the prediction error variance (PEV) of a model, a user-defined
function model, or a feature model (converted from a feature).

2 Variables and Models

2-18



You can use the “Model Properties” on page 2-33 dialog to switch a model output
between the model value and the boundary or PEV of the model. For function models see
“Adding New Function Models” on page 2-21. You can convert a feature to a model by
selecting Feature > Convert to Model.

Importing Models

CAGE enables you to calibrate lookup tables by referring to models constructed in the
Model Browser.

CAGE can only open Model-Based Calibration Toolbox model files. You can import
models from project files (.mat, .cag) and from exported model files (.exm).

Import Models From Project

You can use the CAGE Import Tool to select models to import from any Model-Based
Calibration Toolbox project file produced in CAGE or the Model Browser (.mat or .cag).
You can replace suitable models in your current CAGE project (note that Model Browser
models must have exactly the same input names as the CAGE model you are replacing).

See “Import Models and Calibration Items Using CAGE Import Tool” on page 2-5 for
instructions.

Import Exported Models File

To import models from a Model Browser exported models file (.exm):

1 Select File > Import > Model.
2 A file browser dialog opens. Locate the desired file or files. You can select multiple

files. Examples can be found in matlab/toolbox/mbc/mbctraining. You can
select MBC Model (*.exm) to filter for .exm files.

Click to select the model file, then click Open .

 Setting Up Models

2-19



This opens the Model Import Wizard.
3 Select the models that you want to import by highlighting the models from the list,

or click Select All if you want every model.
4 Either:

• Select the check box Automatically assign/create inputs, then you can click
Finish.

• Alternatively to match inputs up manually, instead click Next .
5 Associate the model factors with the available inputs in your session.

For example, to associate the model factor spark with the variable spk in your
session,

a Highlight a Model Input, spark, in the list on the left and the corresponding
variable, spark, in the list of Available Inputs on the right.

b Click the Assign Input button.
c Repeat a and b for all the model factors.

6 Click Finish to close the wizard and return to the Models view.

Note You can skip steps 5 and 6 by selecting the Automatically assign/create
inputs box at step 6.

You can now see a display of the model surface and the model connections (inputs).

2 Variables and Models

2-20



See Also

• “Setting Up Models” on page 2-16
• “Adding New Function Models” on page 2-21
• “Renaming and Editing Models” on page 2-22

Adding New Function Models

A function model is a model that is expressed algebraically. The function can be any
MATLAB function (including user-defined functions). The only restriction is that the
function must be vectorized, that is, take in column vectors and return a column vector of
the same size, as in this example:

function y = foo(x1, x2) 
y = x1 .* x2;

Once you have a function like this, you can create a function model applying it to any
models or variables in your session, like the following example.

foo(NOX, SPK)

For example, you might want to view the behavior of torque efficiency. So you create a
function model of torque efficiency = torque/peak torque.

To add a function model to your session,

1 Select File > New > Function Model.

This opens the Function Model Wizard.
2 In the dialog box, enter the formula for your function model. For example, enter

torque_efficiency=torque/peak_torque.
3 Press Enter. CAGE checks that the function is recognized; if so, you can click Next.

If the function is incorrectly entered, you cannot click Next.
4 Select the models that you want to import by highlighting the models from the list.
5 Click Next.

 Setting Up Models

2-21



6 You can select the check box to Automatically assign/create inputs and click
Finish to close the wizard and return you to the Models view, or you can click Next
and go to the next screen. Here you can manually associate the model factors with
the available inputs as follows:

a Highlight a Model Input, e.g., peak_torque, in the list on the left and the
corresponding model, peak_torque, in the Available Inputs list on the right.

b Click the Assign input button.

Repeat a and b for all the model factors. Click Finish to close the wizard and return
you to the Models view.

You can now see a display of the model and its connections (inputs).

See Also

• “Setting Up Models” on page 2-16
• “Importing Models” on page 2-19
• “Renaming and Editing Models” on page 2-22

Renaming and Editing Models

Renaming Models

To rename a model,

2 Variables and Models

2-22



1 Highlight the model that you want to rename.
2 Select Edit > Rename.
3 Enter the new name for the model and press Enter.

You can also rename the model by selecting a model and clicking the name, or pressing
F2.

Editing Model Inputs

You can adjust a model so that variables, formulas, or other models are the factors of the
model. For example, a model of torque depends on the spark angle. In place of the spark
angle variable, you can use a model of the maximum brake torque (MBT) as the spark
input.

To edit the inputs of a model,

1 Highlight the model.
2 Select Model > Edit Inputs.

This opens the Edit Inputs dialog box, shown.

 Setting Up Models

2-23



Highlight the model input
that you want to change.

Click Assign Input.

Highlight the new input.

Click
Finish

3 Highlight the Model Input that you want to edit, in the list on the left.
4 Highlight the new input for that factor, in the Available Inputs list on the right.
5 Click the Assign Input button.
6 To close the dialog box, click Finish.

Note If you want to change the range of a variable in the session, change the range in the
variable dictionary. For more information, see “Using the Variable Menu” on page 2-13.

2 Variables and Models

2-24



See Also

Related Examples
• “Set Up Calibrations, Resume Work, or Find Calibration Examples” on page 2-2

 See Also

2-25



Creating and Viewing Composite Models in CAGE
In this section...
“What Are Composite Models?” on page 2-26
“Importing from the Model Browser” on page 2-26
“Combining Existing CAGE Models” on page 2-29
“Viewing Composite Model Properties” on page 2-30

What Are Composite Models?

The composite model type allows you to combine a number of models to represent engine
responses under different operating modes. You can use the composite model in CAGE to
produce optimal calibrations for engines with multiple operating modes. Use composite
models for calibration problems where the goal is to fill a single table for all modes or to
fill a table for each mode, such as:

• Multi-injection diesel engine
• Inclusion of startup conditions in drive cycles
• Rich and stoich regions for engines

You can create a composite model using either of the following approaches:

• Importing into CAGE from the Model Browser and combining suitable responses from
different test plans

• Combining existing models in CAGE

The composite model comprises a collection of models with an extra mode input. The
mode input is an index into the list of models. The component models can have different
sets of inputs. CAGE uses symbol names and not signal names to determine inputs.
Make sure the symbol names match for the same inputs.

Importing from the Model Browser

To import and combine models in the Model Browser into a single composite model:

1 Open the Model Browser, and load the project you want to import composite models
from.

2 Variables and Models

2-26



2 In CAGE, select File > Import > Composite Model.

The Import Composite Model wizard appears.
3 Select the test plans from which you want to import models, and then click Next.

4 Select the responses to combine into a composite model. You can only select
responses that are common to all selected test plans. If you do not want a boundary
model included, clear the Include Boundary check box.

Note Using composite models can result in very large CAGE project files when you
combine point-by-point test plans with a large number of responses. To reduce the
size of project files, exclude boundary models from response models that you do not
want to use as optimization objectives.

 Creating and Viewing Composite Models in CAGE

2-27



After making your selections, click Next.
5 Optional — Edit the name for your mode variable and the names of your operating

modes.

If you have point-by-point models, you can edit the input tolerances to merge close
operating points.

2 Variables and Models

2-28



6 Click Finish to import your new composite model.

Combining Existing CAGE Models

To combine existing CAGE models into a single composite model:

1 Select File > New > Composite Model (or use the toolbar button).

The New Composite Model wizard appears.
2 Select the models to combine into a composite model. The combined inputs are listed

for your selected models. You can combine additional models with existing composite
models as needed. Click Next.

 Creating and Viewing Composite Models in CAGE

2-29



3 Optional — Edit the name for your mode variable and the names of your operating
modes.

If you have point-by-point models, you can edit the input tolerances to merge close
operating points.

4 Click Finish to create your new composite model.

Viewing Composite Model Properties

Select a composite model in the Models view, and select Model > Properties.

In the Composite Model Properties dialog box, click the Model tab to view information
about the model modes and inputs, as the following figure shows.

2 Variables and Models

2-30



For composite models created by combining point-by-point models, use the Composite
Model Properties dialog box to view which modes are available for each operating point,
as shown in the next figure.

 Creating and Viewing Composite Models in CAGE

2-31



2 Variables and Models

2-32



Model Properties
In this section...
“How To Open The Model Properties Dialog Box” on page 2-33
“Model Properties: General” on page 2-34
“Model Properties: Inputs” on page 2-35
“Model Properties: Model” on page 2-36
“Model Properties: Information” on page 2-37

How To Open The Model Properties Dialog Box

Select Model > Properties (or right-click) to view information about the selected model.
This opens the Model Properties dialog box where you can see the model type, definition,
inputs, availability of PEV and constraints, creation date, user name, and toolbox version
on the following tabs: General, Inputs, Model, and Information.

 Model Properties

2-33



Model Properties: General

Here you can see the model type (such as MBC model or function model), the number of
inputs, and the availability of constraints and Prediction Error.

You can use the radio buttons to select the Output Quantity to be the

• Model Value
• Prediction error variance of model
• Boundary constraint of model

The Output Quantity is the model value used everywhere in CAGE (surface plots,
optimization objectives or constraints, tradeoff, etc.).

Choose one of the last two options if you want to use a model's prediction error variance
(PEV) or boundary as a switching input to a function model. You can duplicate the
original model, choose the PEV output quantity, and feed it in to your switch function.

2 Variables and Models

2-34



The option Boundary constraint of model evaluates only the boundary of the model
output. Any boundary information from the inputs is ignored (e.g., if inputs are also
models with boundary models).

You can enter values in the Output saturation limits edit boxes to set bounds on the
model output values.

Model Properties: Inputs

Here you can view all the immediate inputs and variable dependencies of your model.
For some models the two lists will be the same; in the example shown one of the inputs is
another model (MBT) so the variable dependencies list also shows the variable inputs for
that model. This information is shown graphically in the Connections pane.

 Model Properties

2-35



Model Properties: Model

Here you can view the model definition, the project file, and the model path. Function
model definitions are shown here. For MBC models the model definition (showing the
parameters and coefficients of the model formula) is the same information you would see
in the Model Browser part of the toolbox when selecting View > Model Definition.

2 Variables and Models

2-36



Model Properties: Information

Here you can see the user name associated with the model, the date of creation and the
version number of the Model-Based Calibration Toolbox product used to create the
model. If you added any comments to the export information in the Model Browser
Export Models dialog this information also appears here.

 Model Properties

2-37



Specifying Locations of Files
You can specify preferred locations of project and data files, using File > Preferences.

Project files have the file extension .cag and store entire CAGE sessions.

Data files are the files that form part of the CAGE session. For example, the following is
a list of some of the data files used in CAGE:

• Simulink models
• Experimental data (.xls, .csv, or .mat)
• Variable dictionaries (.xml)
• Models (.exm)

To specify preferred locations for files,

1 Select File > Preferences. This opens the dialog box shown.

2 Enter the directory or directories where your CAGE files are stored. Alternatively,
click  to browse for a directory. You can specify directories for projects, data files,
model files and strategy files.

3 Click OK.

2 Variables and Models

2-38



Tables

This section includes the following topics:

• “Setting Up Tables” on page 3-2
• “Creating Tables from a Model” on page 3-4
• “Adding, Duplicating and Deleting Tables” on page 3-9
• “Editing Tables” on page 3-12
• “Filling a Single Table From a Model” on page 3-20
• “Using the History Display” on page 3-23
• “Calibration Manager” on page 3-27
• “Table Properties” on page 3-32
• “Table Normalizers” on page 3-39
• “Inverting a Table” on page 3-47
• “Importing and Exporting Calibrations” on page 3-52

3



Setting Up Tables
Select the Tables view by clicking the Tables button. It opens automatically if you add a
table using the File > New > Table menu items.

The Tables view lists all the tables and normalizers in the current CAGE session.

Here you can add or delete tables and normalizers, and you can calibrate them manually.
Once you have added new tables you can also fill them using experimental data by going
to the Data Sets view.

The next sections cover:

• “Creating Tables from a Model” on page 3-4

Use this wizard to quickly create a set of tables with the same axes for all the inputs
of a model, and the model response, and any other responses that share the same
inputs. You can choose which of these tables to create, and select the values for the
axes (or normalizers) that all tables will share. You can also add all the new tables to
a tradeoff.

• “Adding, Duplicating and Deleting Tables” on page 3-9

How to create tables manually, and duplicate and delete tables.
• “Editing Tables” on page 3-12

Information on using the table view functionality once you have added tables to your
project

• “Filling a Single Table From a Model” on page 3-20

Use this wizard to fill a table with values from a model evaluated at the table
breakpoints.

• “Using the History Display” on page 3-23

You can use the History display (from any other table or normalizer view in CAGE) to
view and reverse changes and revert to previous versions of your tables.

3 Tables

3-2



• “Calibration Manager” on page 3-27

Use the Calibration Manager to set up tables manually or from calibration files.
• “About Normalizers” on page 3-39

Normalizers are the axes or breakpoints of tables.
• “Importing and Exporting Calibrations” on page 3-52

How to get table calibration information into and out of CAGE in various formats.

See also

 Setting Up Tables

3-3



Creating Tables from a Model
You can access the table creation wizard by menu or toolbar, from any view in CAGE.
The wizard helps you quickly create a set of tables with the same axes for all the inputs
of a model, and the model response, and any other responses that share the same inputs.
You can choose which of these tables to create, and select the values for the axes (or
normalizers) that all tables will share. You can also add all the new tables to a tradeoff.

This wizard can be useful when creating tables for an optimization, to use when filling
tables with optimization results, and for investigating results in the tradeoff views.

To create tables (and optionally a tradeoff) from a model,

1 Select Tools > Create Tables From Model (or use the toolbar button).

The Create Tables From Model Wizard appears.
2 Select a model to base the new tables on.

If you are viewing a model, then the wizard automatically selects the current model.
If you are viewing an optimization or an optimization output node, then the wizard
automatically selects the model in the first objective. You can use this to create
tables for the selected optimization.

If you have selected a point-by-point model, you can optionally select the check box to
Create operating point data set.

3 Tables

3-4



Click Next.
3 Select table axes input variables and set up the normalizers to use for the new

tables.

 Creating Tables from a Model

3-5



If you have selected a point-by-point model, CAGE automatically selects the check
box to Use model operating points for the table normalizers. You can clear the
check box if you want to select different normalizers.

• Select inputs. For the X- and Y-axis inputs, you can select any input variable for
your selected model, or the model response.

• Select normalizers. You can select existing normalizers in your project or create
new ones. If creating new normalizers you can edit the numbers of Table rows
and Table columns, and edit values in the Input columns. By default CAGE
initializes normalizers with equally-spaced points across variable ranges, unless
you select the response model as a table input.

If you choose a response model input, you must specify the breakpoints. Click the
button to Edit breakpoints, then enter a number of points and the range to
space the breakpoints over. If you do not do this, model inputs are spaced over

3 Tables

3-6



0-1, because CAGE cannot determine the range automatically as happens with
variables. After you create your tables with a model input, in your Variable
Dictionary you can view a new variable named modelname_input with the
range you specified. CAGE uses this input variable to match to model names
when you fill tables from optimization results. See “Table Filling When
Optimization Operating Point Inputs Differ from Table Inputs” on page 7-14.

Click Next.
4 Select check boxes to specify which variables and responses to create tables for. You

can create tables for other responses with exactly the same inputs as the primary
model (and the same operating points for point-by-point models).

By default you will also create a tradeoff containing all of the new tables. The
tradeoff can be very useful for investigating optimization results. See “Performing a
Tradeoff Calibration” on page 5-2. If you do not want to create the tradeoff, clear
the check box.

 Creating Tables from a Model

3-7



Click Finish to create the tables and tradeoff.

You see a dialog listing all the items you have created, and you can choose which (if any)
of the items to view next.

3 Tables

3-8



Adding, Duplicating and Deleting Tables

In this section...
“Adding Tables” on page 3-9
“Duplicating Tables” on page 3-10
“Deleting Tables” on page 3-10

Adding Tables

To quickly create tables from a model, use the table creation wizard. See “Creating
Tables from a Model” on page 3-4.

Otherwise you can add a table using the File > New menu items, as described below.

To add tables, you can first select the Tables view, or CAGE automatically switches to
this view if you add a table using the File > New menu items.

The Tables view lists all the tables and normalizers in the current CAGE session.

To add a table to a session,

1 Decide whether you want to add a one- or a two-dimensional table.

For example if you want to add a modifier table to account for the variation in
exhaust gas recirculation, add a one-dimensional table (which has one input). If,
however, you want to add a table with speed and load as its normalizer inputs, then
add a two-dimensional table.

2 Select File > New > 1D Table or File > New > 2D Table as appropriate.

Adding new tables automatically switches you to the Tables view.
3 In the Table Setup dialog you can enter the table name, number of rows and columns

and initial value, and select the input variable (or variables) from the drop-down
menus.

 Adding, Duplicating and Deleting Tables

3-9



4 Click OK to add the new table. CAGE automatically initializes the normalizers of
the table by spacing the breakpoints evenly over the ranges of the selected input
variables.

Note You can also select Tools > Calibration Manager to change the size of a
table. For information, see “Setting Up Tables” on page 3-2.

You can rename tables by first selecting the table, then

• Press F2, or
• Select Edit > Rename.

You can manually calibrate by entering values in any table. You can also fill tables using
experimental data or optimization output by going to the Data Sets view; see “Fill
Tables from Data”, “Compare Calibrations To Data”, and “Filling Tables from
Optimization Results” on page 7-9.

Duplicating Tables

To copy a table or a normalizer from a session,

1 Select the Tables view.
2 Highlight the required table or normalizer.
3 Select Edit > Duplicate table_name (`table_name' is the currently selected table).

See also “Import Models and Calibration Items Using CAGE Import Tool” on page 2-5 to
add existing tables from other CAGE project files.

Deleting Tables

When you are calibrating a collection of tables using either Feature or Tradeoff
calibrations, you cannot easily delete tables without affecting the entire calibration.
When deleting items, you must delete from the highest level down. For example, you
cannot delete a table that is part of a feature; you must delete the feature first.

To delete a table or a normalizer from a session,

1 Select Tables view.

3 Tables

3-10



2 Highlight the required table or normalizer.
3 Click ; or press Delete; or select Edit > Delete table_name (`table_name' is the

currently selected table).

 Adding, Duplicating and Deleting Tables

3-11



Editing Tables

In this section...
“About CAGE Tables” on page 3-12
“Viewing and Editing a Table” on page 3-13
“Filling a Table From a Model” on page 3-14
“Filling a Table by Extrapolation” on page 3-15
“Locking Table Values” on page 3-16
“Editing the Graph of the Table” on page 3-17
“Arithmetic Operations On Table Values” on page 3-17

About CAGE Tables

When you select a table in the tree (under feature or tables), you see the Table view.

Note For feature calibration (filling and optimizing table values by comparing a strategy
or collection of tables with a model), see “About Feature Calibrations” on page 4-2. To
fill a single table with model values, see “Filling a Single Table From a Model” on page 3-
20.

In CAGE, a table is defined to be either a one-dimensional or a two-dimensional lookup
table. One-dimensional tables are sometimes known as characteristic lines or functions.
Two-dimensional tables are also known as characteristic maps or tables. CAGE regards
them both as similar objects.

Each lookup table has either one or two axes associated with it. These axes are
normalizers. See “About Normalizers” on page 3-39.

For example, a simple MBT feature has two tables:

• A two-dimensional table with speed and relative air charge as its normalizers
• A one-dimensional table with AFR as its normalizer

3 Tables

3-12



Viewing and Editing a Table

In the Table view:

1 To edit a value in the table, double-click the cell, then enter a value. You can right-
click to Copy or Paste values. You can also edit table values using the table graph.

 Editing Tables

3-13



To apply arithmetic operations to selected cell values or whole tables, see “Filling a
Table by Extrapolation” on page 3-15, and “Arithmetic Operations On Table
Values” on page 3-17.

You can lock cell values. See “Locking Table Values” on page 3-16.
2 The 2D table is shaded to help you relate the table values to surface plots. Table cells

background color matches the corresponding surface plot color. Toggle table shading
with View > Shade Table (also in the plot context menu).

3 The graph of the 2D table pane displays a surface plot of the table values. The
default plot orientation is Y/X to match engineering convention. To match the
orientation of the numerical table, transpose the plot axes by right-clicking and
selecting 2D Orientation X/Y. Switch back with 2D Orientation Y/X (also in the
View menu). You can switch mouse mode between rotating and editing the table
surface, see “Editing the Graph of the Table” on page 3-17.

4 View the table size, bounds, normalizers, inputs and last change history in the Table
Details pane. To view and revert table changes, click View History (also in the
View menu). Any locked cells and extrapolation mask cells are saved with table
history. For details, see “Using the History Display” on page 3-23.

5 Under Table Details, the Used in pane displays what CAGE items use the current
table (e.g., optimizations, tradeoffs, features). Double-click items in the list to change
view to those items.

The table displays the values of your lookup table and displays the breakpoints of the
normalizers.

The table breakpoint values are not necessarily identical to the normalizer breakpoints.
When you create a table the breakpoint values are the same as the normalizer values. If
you delete breakpoints from the normalizers the table size does not change, so the table
column and row breakpoint values are interpolated between the remaining normalizer
breakpoints.

Note You can revert table changes in the History display. Click View History in the
Table Details pane. See “Using the History Display” on page 3-23.

Filling a Table From a Model
To fill a single table with model values, see “Filling a Single Table From a Model” on
page 3-20.

3 Tables

3-14



You can also select Table > Convert to Model to convert a table directly to a model.

Filling a Table by Extrapolation

Filling a table by extrapolation fills the table with values based on the values already
placed in the extrapolation mask.

To fill a table by extrapolating over a preselected mask, click  or select Table >
Extrapolate.

This extrapolation does one of the following:

• If the extrapolation mask has points on a line, then CAGE performs linear
extrapolation on points projected on to that line. The simplest case of this is when you
try to fill a 2D table using data from a single row or column.

• If the extrapolation mask has points on a plane, then CAGE uses the plane for
extrapolation. The simplest case of this is when the mask has three points and the
points are not on a line.

• If the extrapolation mask has four or more ordered cells in a grid, then CAGE uses
bilinear extrapolation.

• If the extrapolation mask has four or more cells not on a grid, CAGE uses a thin plate
spline (a type of radial basis function) to extrapolate the table values.

To ensure that tables extrapolate smoothly to locked cell values, CAGE includes the
locked cells in the extrapolation even if the cells are not part of the extrapolation mask.

Using the Extrapolation Mask

The extrapolation mask defines a set of cells that form the basis of any extrapolation.

For example, a speed-load (or relative air charge) table has values in the following ranges
that you consider to be accurate:

• Speed 3000 to 5000 rpm
• Load 0.4 to 0.6

You can define an extrapolation mask to include all the cells in these ranges. You can
then fill the rest of your table based on these values.

To add or remove a cell from the extrapolation mask,

 Editing Tables

3-15



1 Right-click the table.
2 Select Add To Extrapolation Mask or Remove From Extrapolation Mask from

the menu.

Alternatively, select Copy Mask from to copy a mask from another table.

Cells included in the extrapolation mask are colored blue.

Cells that are locked and in the extrapolation mask are blue and have a padlock icon.

Use the Table menu for these options:

• Extrapolation Mask (the following items are also in the table context menu)

• Add Selection — Adds selected cells to the extrapolation mask.
• Remove Selection — Removes selected cells from the extrapolation mask.
• Clear Mask — This ensures that none of the cells are in the extrapolation mask.
• Copy Mask from — Copy a mask from another table.
• Convert Mask to Locks — Convert mask cells to locked cells.

• Generate From PEV — Generate extrapolation mask depending on the value of
prediction error (PEV). A dialog opens where you can specify the threshold value of
PEV below which you want to include cells in the mask. The dialog contains
information about the range and mean of prediction error for the model to help you
select a threshold.

• Generate From Boundary Model — Generate extrapolation mask to include
only cells within the boundary model.

• Extrapolate — Extrapolates values from the cells in the extrapolation mask to fill
the whole table. Also in the toolbar.

All the toolbar button functions are also found in the table menu: Initialize, Fill,
Extrapolate, Fill by Inversion. For information on these see “Optimize Table
Values” on page 4-24.

Locking Table Values

When you are satisfied with an area of the table, you might want to lock the cell values,
to ensure that those values do not change.

3 Tables

3-16



To lock or unlock a cell value, right-click the cell and select from the menu. Locked cells
have a padlock icon in the display. You can also lock an entire table or copy locks from
other tables.

Use the Table menu for these options:

• Table Cell Locks The following items are also in the table context menu:

• Lock Selection — Locks the selected cells and a padlock icon appears.
• Unlock Selection — Unlocks the selected cells.
• Lock Entire Table — Locks every cell in the current table.
• Clear All Locks — Unlocks all cells in the table.
• Copy Locks from — Copy locks from another table.
• Convert Locks to Mask — Convert locked cells to mask cells.

• Properties. This opens the Table Properties dialog where you can set the precision
type of the table data. See “Table Properties” on page 3-32.

Editing the Graph of the Table
The table view displays both the table values and a graph of the table. This gives a useful
display of the table's behavior.

• For 1D tables, you can edit the table from the plot by clicking and dragging.
• For 2D tables, in the default mode, you can rotate the graph of the table by clicking

and dragging the axes.

Select View > Edit Table Surface to alter values in the 2D table by clicking and
dragging vertically any point. In this mode, when you click a point, a blue line
indicates the selected point in the table. To return to table rotation mode without
altering table values, select View > Rotate Table Surface.

Note When editing the table surface you may drag a value unintentionally - to return
to previous table values, use the History display. Click View History in the Table
Details pane. See “Using the History Display” on page 3-23.

Arithmetic Operations On Table Values
The Table menu item Adjust Cell Values (also a right-click context menu item) opens a
dialog where you can specify an arithmetic operation to apply to either the whole table or

 Editing Tables

3-17



only the cells currently selected. Arguments to operations can be numeric (plus 10) or
percentages (minus 5%). You can set the selected cells to a value or to the mean. You can
also apply user-defined functions.

1 Right-click the table or select Table > Adjust Cell Values. The Adjust Cell Values
dialog box appears.

2 Select the operation to apply from the list - plus, minus, times, divide, set to value,
set to mean, or custom operation. Use the custom operation to specify your own
function in a file.

3 Use the Value edit box to enter an argument. All operators accept a numeric
argument (e.g. operator = plus, value = 10). You can also enter a percentage for the
operators plus, minus, and set to value (e.g. `minus' `1%').

4 Select the radio buttons to apply the operation to either the whole table or only the
cells currently selected, and click OK.

You can use the custom operation option to apply user-defined functions.

The custom function is called in this way:

newvalues = customfcn( currentvalue, selectedregion )

Where currentvalue is the matrix of table values and selectedregion is a logical
matrix the same size as the table, that is "true" where a cell is selected by the user, and
false otherwise.

The newvalues matrix should be the same size as currentvalue, and these numbers
are put straight into the table.

EXAMPLES:

function table = addOne( table, region )
table(region) = table(region) + 1;
return;

function table = randomtable( table, region )
table( region ) = rand( nnz( region ), 1 );

function table = saturate( table, region )
maxValueAllowed = 150;
table( region & table>maxValueAllowed ) = maxValueAllowed; 
minValueAllowed = 100;

3 Tables

3-18



table( region & table<minValueAllowed ) = minValueAllowed ;
return

As an illustration, to use the saturate example:

1 Save the function text in a file named saturate.m.
2 Click and drag to select a region of cells in a CAGE table.
3 Right-click and select Adjust Cell Values.
4 In the dialog:

• Select custom operation from the Operation list
• Enter saturate in the Value edit box (the first function of that name found on

the MATLAB path will be used), or click the browse button to locate the file.
• Select the radio button to Apply to selected table cells, and click OK.

The selected table cells are saturated between the ranges specified in the function file
(between 100-150).

 Editing Tables

3-19



Filling a Single Table From a Model
To fill a table with values from a model evaluated at the table breakpoints:

1 Open the Table Fill Wizard.

• With the table selected in the Tables view, select Table > Fill.
•

Alternatively, click the Fill toolbar button (  ).

The Table Fill Wizard opens.

2 Select a model by clicking the Select Model button.

The Select Model dialog box opens.

3 Tables

3-20



Select the model you want to fill the table with, and click OK. You return to the
Table Fill Wizard.

Note The subsequent screens of the Table Fill Wizard are identical to steps 2–4 of
the Feature Fill Wizard. See “Filling and Optimizing Table Values” on page 4-24 for
details. This following procedure describes small differences in usage for the Table
Fill Wizard.

3 (Optional) Change constraint, create links, or both. For table fill, you cannot use
gradient constraints.

Click Next.
4 (Optional) Change variable values from the defaults. By default the table's

normalizer breakpoints and the set points of other variables are selected, so the
number of grid points equals the number of table cells.

Click Next.
5 Click the Fill Tables button. The Progress graph shows the change in RMSE as the

optimization progresses.

• Smoothing does not affect table filling (no gradient constraints with Table Fill),
and the surface plot check boxes are not enabled.

 Filling a Single Table From a Model

3-21



• The table Bounds (specified in the Table Properties) constrain table values. The
toolbox clears any previous extrapolation mask and automatically extrapolates
the new table. When using the Feature Fill Wizard, you can control these options
on the first screen of the wizard. With the Table Fill Wizard, you cannot control
these options as you start on screen 2.

Click Finish to exit the wizard.

After you exit the wizard, the plots with selected check boxes appear. You can then view
your filled table values and surface plot in the Tables view of the CAGE Browser.

3 Tables

3-22



Using the History Display
In this section...
“Introducing the History Display” on page 3-23
“Resetting to Previous Table Versions” on page 3-24
“Comparing Versions” on page 3-25

Introducing the History Display

The History display enables you to view the history of any table or normalizer in a CAGE
session.

The History display lets you

• Revert to previous versions of tables and normalizers (See “Resetting to Previous
Table Versions” on page 3-24). Any locked cells and extrapolation mask cells are
saved with table history. Reverting to a version includes reverting to that version's
mask and locks (except any table history from release earlier than R2014a.

• Compare different versions of tables and normalizers (See “Comparing Versions” on
page 3-25.)

You can view the History display of a table or normalizer by selecting View > History,
or clicking View History in the Table Details pane.

 Using the History Display

3-23



The upper pane of the History display lists all the versions of the highlighted object.

The lower pane displays the normalizer or table of the highlighted version.

Resetting to Previous Table Versions
To reset the normalizer or table to a previous version, select View > History to open the
History display.

1 Highlight the previous version that you want to revert to.
2 Tables are independent of normalizers, so if you reset a table to a previous version

you must also reset the normalizers to that version (if they have changed). To reset

3 Tables

3-24



normalizers to match the reverted table version, select the Reset normalizers
check box.

3 Click Reset.
4 Click Close to see the updated table view.

To remove previous versions of the object or comments,

1 Highlight the version that you want to remove.
2 Click Remove.

Click Clear to remove all table history.

Adding and Editing Comments About Versions

To add comments,

1 Click Add.
2 In the dialog box enter your comment.
3 Click OK. A new History set point is added when you add a comment.

To edit comments,

1 Select the comment that you want to edit.
2 Click Edit comment.
3 In the dialog box, edit the comment.
4 Click OK.

Comparing Versions

To compare two different versions of a normalizer or table, highlight the two versions
using Ctrl+click. Note the following:

• The lower pane shows the difference between the later and the earlier versions.
• Cells that have no entries have no difference.
• Cells that have red entries have a higher value in the later version.
• Cells that have blue entries have a lower value in the earlier version.

 Using the History Display

3-25



3 Tables

3-26



Calibration Manager
In this section...
“Introducing the Calibration Manager” on page 3-27
“Setting Up Tables from a Calibration File” on page 3-27
“Setting Up Tables Manually” on page 3-31
“Copying Table Data from Other Sources” on page 3-31

Introducing the Calibration Manager

To change the size of tables in CAGE, you use the Calibration Manager dialog box. Open
this tool by selecting a table, then selecting Tools > Calibration Manager or by
clicking the Calibration Manager button  on the toolbar.

You can either set up your tables manually or from a calibration file. You can also copy
table data from other sources.

You can enter the required inputs, number of rows and columns and an initial value for
table cells when you add a new table. Use the File > New menu items to make new
tables. See “Adding, Duplicating and Deleting Tables” on page 3-9. You can use the
Calibration Manager to change the sizes, values and precision of tables.

Setting Up Tables from a Calibration File

Setting up tables with a calibration file involves two steps:

• “Importing Calibration Files into the Calibration Manager” on page 3-27
• “Importing Calibration File Values into a Table” on page 3-28

Importing Calibration Files into the Calibration Manager

You can import calibration files from the CAGE Browser by selecting Select File >
Import > Calibration > File or ATI Vision. Your selected file opens in the Calibration
Manager.

You can also open the Calibration Manager and import calibration files from within the
Calibration Manager window by using the following procedure:

 Calibration Manager

3-27



1 In the Calibration Manager, open the file by clicking the Open Calibration File
button  in the toolbar.

The Import Calibration Data dialog box opens.
2 Select whether you want to import from File or from ATI Vision.

• If importing from ATI Vision, use the Connection Manager dialog box to select
the required calibration. See “Importing and Exporting Calibrations” on page 3-
52 for instructions.

• If importing from file, browse to the calibration file, select it, and click Open.

In the Calibration Manager, review the files you have imported:

• Your imported calibration file items appear in the Calibration File Contents pane
at the top right.

• The tables, normalizers, and other items in your project appear on the left in the
Project Calibration Items pane.

• The values of the currently selected item appear in the lower pane, so you can inspect
the values in your calibration file and current project tables. Because the import
process filters out empty data, any empty variables will not appear.

Note You can find an example calibration file, tutorialcal.mat, in the mbctraining
folder.

Importing Calibration File Values into a Table

To import the data in your calibration file into a table in your project:

1 Click to select both the table in the Calibration File Contents pane and the table
in the Project Calibration Items pane with which you want to associate it.

2 Associate these two items by clicking the button  (with tool tip “Set Up
From Selected Calibration File Item”). The values in the calibration file load into the
table. You can inspect the values in the lower pane by clicking to select the table in
the Project Calibration Items pane.

To associate all the items listed in the Project Calibration Items pane with items
that have the same names listed in the Calibration File Contents pane, click the

3 Tables

3-28



Auto button  (with tool tip “Set Up All Matching Calibration File
Items”).

To find particular names in a large calibration file, you can click the Calibration
File Contents list and type the first few letters of the item that you want to find.
The cursor moves to the letters specified as you type.

3 Check the display of your table, and then click Close.

When you close the Calibration Manager you can view your updated tables in CAGE. If
you want to compare or revert to an earlier version of your table, select View > History.
See “Using the History Display” on page 3-23.

The following figure shows the Calibration Manager.

 Calibration Manager

3-29



Check the display of your table

Manually
set up the
table or
normalizer.

Contents of
calibration file

Association buttonsSelect the axis or table
to be calibrated.

Note You can add additional file formats to configure CAGE to work with your processes.

Contact MathWorks for details about adding file formats at http:/
www.mathworks.com/products/mbc/.

3 Tables

3-30

http://www.mathworks.com/products/mbc/
http://www.mathworks.com/products/mbc/


Setting Up Tables Manually
1 Select the normalizer or table to set up from the list on the left.
2 Enter the number of rows and columns in the edit boxes on the left and select initial

values for each cell in the table.
3 Click Apply.

Note When initializing tables for a feature calibration (comparing a model to a
strategy) you should think about your strategy. CAGE cannot fill those tables if you
try to divide by zero. Modifier tables should be initialized with a value of 1 for all
cells if they are multipliers, and a value of 0 if they are to be added to other tables.
See “Initializing Table Values” on page 4-36.

4 Check the display of your table, then click Close.

Copying Table Data from Other Sources

You can paste table values from other applications, such as Excel, by copying the array in
the other application and clicking Paste  in the Calibration Manager:

1 Open the desired file and copy the array that you want to import.
2 In the Calibration Manager dialog box, click Paste .

You can also set up a table from a text file:

1 Click Set Up From ASCII File  in the toolbar.
2 Select the desired file, then click Open.

Note If the size of the table is different from the file that you are copying, CAGE
changes the size of the table in the session.

 Calibration Manager

3-31



Table Properties

In this section...
“Opening the Table Properties Dialog Box” on page 3-32
“Table Properties: General Tab” on page 3-32
“Table Properties: Table Values Precision Tab” on page 3-32
“Table Properties: Inputs Tab” on page 3-38

Opening the Table Properties Dialog Box

In the Tables view, to reach the Table Properties dialog,

• Right-click a table node and select Properties.
• Select a table, then select Table > Properties

Table Properties: General Tab

The selected table name, type and number of inputs are displayed.

Use the Table value limits edit boxes to set a range of values restricting the values in
the table.

When you are done, click OK.

Table Properties: Table Values Precision Tab

The Table Values Precision tab contains the same settings as the Edit Precision dialog
box (reached by clicking the Edit Precision button in the Calibration Manager dialog
box).

These settings allows you to edit the precision of the number in selected tables and
normalizers according to the way tables are implemented in the electronic control unit
(ECU). The ECU designer chooses the type of precision for each element to make best use
of available memory or processor power.

To edit the precision of a table or normalizer,

3 Tables

3-32



1 Clear the Read-only check box to make the precision writable.
2 Select the Precision type you require for the table:

• Floating Point (See “Floating-Point Precision” on page 3-33.)
• Polynomial Ratio, Fixed Point (See “Polynomial Ratio, Fixed Point” on

page 3-34.)
• Lookup Table, Fixed Point (See “Lookup Table, Fixed Point” on page 3-37.)

Floating-Point Precision

The advantage of using floating-point precision is the large range of numbers that you
can use, but that makes the computation slower.

There are three types of floating-point precision that you can choose from:

• IEEE double precision (64 bit)
• IEEE single precision (32 bit)
• Custom precision

If you choose Custom precision, you must specify the following:

• Number of mantissa bits
• Number of exponent bits

 Table Properties

3-33



See Also

• For more information on IEEE double precision in MATLAB, see Moler, C., Floating
Points: IEEE Standard Unifies Arithmetic Model, The MathWorks Company
Newsletter, 1996.

Polynomial Ratio, Fixed Point

The advantage of using fixed-point precision is the reduction in computation needed for
such numbers. However, it restricts the numbers available to the user.

For example, the polynomial ratio is of the form (see the ratio shown)

3 Tables

3-34

http://www.mathworks.com/company/newsletters/articles/floating-points-ieee-standard-unifies-arithmetic-model.html
http://www.mathworks.com/company/newsletters/articles/floating-points-ieee-standard-unifies-arithmetic-model.html


To edit the polynomial ratio,

1 Select the Numerator Coefficients edit box and enter the coefficients. In the
preceding example, enter 500.

The number of coefficients determines the order of the polynomial, and the
coefficients are ordered from greatest to least.

2 Select the Denominator Coefficients edit box and enter the coefficients. In the
preceding example, enter 0255.

3 To edit the size of the precision, choose from

• BYTE (8 bits)
• WORD (16 bits)
• LONG (32 bits)
• CUSTOM (Enter the number of bits in the edit box)

4 Select the Signed check box if you want the numbers to be negative and positive.

 Table Properties

3-35



3 Tables

3-36



Lookup Table, Fixed Point

The advantage of using fixed-point precision is the reduction in computation needed for
such numbers. However, it restricts the numbers available to the user.

For example, consider using a lookup table for the physical quantity spark advance for
maximum brake torque (MBT spark). Typically, the range of values of MBT spark is 0 to
50 degrees. This is the physical data. The ECU can only store bytes of information and
you want to restrict the hardware store to a range of 0 to 8, with at most one decimal
place stored.

To adjust the fixed-point precision of the lookup table:

1 Select the Physical Data edit box and enter the range of the physical data.

 Table Properties

3-37



2 Select the Hardware Data and enter the range to store.
3 To edit the size of the precision, choose from

• BYTE (8 bits)
• WORD (16 bits)
• LONG (32 bits)
• CUSTOM (Enter the number of bits in the edit box)

4 Select the Signed check box if you want the numbers to be negative and positive.

In the example shown, the hardware is restricted to 8 bytes and to one decimal place.

Table Properties: Inputs Tab

This tab displays the inputs and variable dependencies for the selected table.

3 Tables

3-38



Table Normalizers
In this section...
“About Normalizers” on page 3-39
“Introducing the Normalizer View” on page 3-40
“Editing Breakpoints” on page 3-42
“Input/Output Display” on page 3-43
“Normalizer Display” on page 3-43
“Breakpoint Spacing Display” on page 3-44

About Normalizers

What are normalizers? A normalizer is the axis of your lookup table. It is the same as the
collection of the breakpoints in your table.

CAGE distinguishes between the normalizers and the tables that they belong to. Using
models to calibrate lookup tables enables you to perform analysis of the models to
determine where to place the breakpoints in a normalizer. This is a very powerful
analytical process.

Note For information on optimizing breakpoints with reference to a model (in feature
calibration), see “Optimize Normalizer Breakpoints” on page 4-38.

It is important to stress that in CAGE a lookup table can be either one-dimensional or
two dimensional. One-dimensional tables are sometimes known as characteristic lines or
functions. Two-dimensional tables are also known as characteristic maps or tables. This
is important because normalizers are very similar to characteristic lines.

For example, a simple strategy to calibrate the behavior of torque in an engine might
have a two-dimensional table in speed and relative air charge (a measure of the load).
Additionally, this strategy might take into account the factors of air/fuel ratio (AFR) and
spark angle. Each of these compensating factors is accounted for by the use of a simple
characteristic line. In CAGE, these characteristic lines are one-dimensional tables. In the
example strategy, there are the following tables and normalizers:

• One characteristic map: the torque table

 Table Normalizers

3-39



• Six characteristic lines:

• Two tables: one for AFR and one for spark angle
• Four normalizer functions: speed, load, AFR, and spark angle

Notice also that a breakpoint is a point on the normalizer where you set values for the
lookup table.

Thus, when you calibrate a normalizer you place the individual breakpoints over the
range of the table's axis.

Introducing the Normalizer View

The normalizer node shows the Normalizer view, which displays

• One normalizer if the table selected is one-dimensional
• Both normalizers if the table is two-dimensional

Note If the table has two normalizers, both are displayed, the normalizer for the table
columns at the top, the normalizer for the table rows below. This is true whichever
normalizer on the tree is highlighted.

See “Editing Breakpoints” on page 3-42.

The parts of the display as shown in the example below are:

• “Input/Output Display” on page 3-43. This shows the breakpoints of the normalizer.
• “Normalizer Display” on page 3-43. This is a graphical representation of the Input

Output display.
• “Breakpoint Spacing Display” on page 3-44. This shows a slice of the model (in

feature calibration) over the range of the breakpoints.
• The comparison pane (for feature calibration with reference to a model). For

information, see “Viewing the Normalizer Comparison Pane” on page 4-43.

3 Tables

3-40



4. To view the comparison pane

Selected node 1. Inout output display 2. Normalizer display 3. Breakpoint spacing display

 Table Normalizers

3-41



Editing Breakpoints
To edit breakpoints:

• Double-click on a cell in the Input or Output column and edit the value.
• Click and drag a breakpoint in the Normalizer Display graph or the Breakpoint

Spacing display.

To view the history of the normalizer function, select View > History from the menu.
This opens the History dialog box where you can view and revert to previous versions.
For a more detailed description of the History dialog box, see “Using the History Display”
on page 3-23.

Locking and Unlocking Breakpoints

Locking breakpoints ensures that the locked breakpoint does not alter. You might want
to lock a breakpoint when you are satisfied that it has the correct value.

To lock a breakpoint, do one of the following:

• Right-click the selected breakpoint in the Input/Output display and select Lock.
Locked breakpoint cells have padlock icons.

• Right-click the selected breakpoint in the Normalizer Display or Breakpoint
Spacing display and select Lock Breakpoint. Locked breakpoints are black.

Similarly use the right-click context menus to unlock breakpoints.

Deleting Breakpoints

Deleting breakpoints removes them from the normalizer table. There are still table
values for the deleted breakpoints: CAGE determines the positions of the deleted
breakpoints by spacing them linearly by interpolation between the nondeleted
breakpoints.

Deleting breakpoints frees ECU memory. For example, a speed normalizer runs from 500
to 5500 rpm. Six breakpoints are spaced evenly over the range of speed, that is, at 500,
1500, 2500, 3500, 4500, and 5500 rpm. If you delete all the breakpoints except the
endpoints, 500 and 5500 rpm, you reduce the amount stored in the ECU memory. The
ECU calculates where to place the breakpoints by linearly spacing the breakpoints
between the 500 rpm breakpoint and the 5500 rpm breakpoint.

To delete a breakpoint, right-click the breakpoint and select Delete Breakpoint.

3 Tables

3-42



Deleted breakpoints are green in the Breakpoint Spacing display. You can restore
them by right-clicking and selecting Add Breakpoint.

Input/Output Display

The table consists of the breakpoints of the normalizer function.

The table has inputs and outputs:

• The inputs are the values of the breakpoints.
• The outputs refer to the row/column indices of the attached table.

To change values of the normalizers in the Input Output display, double-click a cell in
the Input column and change its value.

Normalizer Display

This displays the values of the breakpoints plotted against the marker numbers of the
table (that is, the inputs against the outputs).

Click and drag the breakpoints to move them.

 Table Normalizers

3-43



Locked breakpoint

Breakpoint

Values of the
breakpoints

Breakpoint Spacing Display

The Breakpoint Spacing display shows

• A slice through the model in blue (when feature calibrating with reference to a model)
• The breakpoints in red

To move breakpoints, click and drag.

3 Tables

3-44



A slice through the model: blue

Breakpoint: red

Locked breakpoint: black

Deleted breakpoint: green

Show the Model's Curvature

You might want to view the curvature of the model to manually move breakpoints to
where the model's curvature is greatest.

To display the model slice as its second-order derivative, the curvature of the model,

• Right-click the model in the Breakpoint Spacing display and select Display >
Model Curvature..

You can revert to displaying the model by selecting Display > Modelfrom the right-click
menu.

Multiple Slice View

By default the Breakpoint Spacing display shows one slice through the model, shown.

 Table Normalizers

3-45



Viewing many slices of the model gives a better impression of the curvature of the model.
For example, see the following figure.

To view multiple slices through the model,

• Right-click the model slice in the Breakpoint Spacing display and select Number
of Lines and choose the number of slices that you want to view from the list.

3 Tables

3-46



Inverting a Table

In this section...
“Overview of Inverting Tables” on page 3-47
“Inverting One-Dimensional Tables” on page 3-49
“Inverting Two-Dimensional Tables” on page 3-51

Overview of Inverting Tables

You can use CAGE to produce a table that is the inverse of another table. This involves
swapping a table input with a table output, and you can invert 1-D or 2-D tables.

Inverting a table allows you to link a forward strategy to a backward strategy; that is,
swapping inputs and outputs. This process is desirable when you have a "forward"
strategy, for example predicting torque as a function of speed and load, and you want to
reverse this relationship in a "backward strategy" to find out what value of load would
give a particular torque at a certain speed.

Normally you fill tables in CAGE by comparing with data or models. Ideally you want to
fill using the correct strategy, but that might not be possible to find or measure. If you
only have a forward strategy but want a backward one, you can fill using the forward
strategy (tables or model) and then invert the table.

For example, to fill a table normally from a model, you need the model response to be the
table output, and the model inputs to be a function of the table inputs (or it should be
possible to derive the input -- for example, air mass from manifold pressure). If the
available model is “inverted“ (the model response is a table input and the table output is
a model input) and you cannot change the model, you can invert the table in CAGE.

 Inverting a Table

3-47



In the diagram of a table shown, the x- and y-axes represent the normalizers (which you
want to be spark and load) and the z-axis is the output at each breakpoint (torque). To fill
this table correctly from the model is a two-step process. First you need to fill a table that
has the same input and output as the model, and then fill a second table by inversion.

For the inversion to be deterministic and accurate, the table to be inverted must be
monotonic; that is, always increasing or decreasing. This requirement is explained by the
following one-dimensional example. Every point on the y-axis must correspond to a
unique point on the x-axis. The same problem applies also to two-dimensional tables: for
any given output in the first table there must be a unique input condition; that is, every
point on the z-axis should correspond to a unique point in the x-y plane. Some table
inversions have multiple values and so do not meet this requirement, just as the square
root function can take either positive or negative values. You can use the inversion
wizard in CAGE to handle this problem; you can control the inversion process and
determine what to do in these cases.

The following example illustrates a table with multiple values. There are two solutions
for a single value of torque. CAGE has a table inversion tool that can help overcome this
problem. You can specify whether you want to use the upper or lower values for filling
certain parts of the table; this allows you to successfully invert a multiple-valued
function. See the inversion instructions for 1-D and 2-D tables in the next sections.

3 Tables

3-48



The process of inverting a one-dimensional table is different from the process of inverting
a two-dimensional table.

Inverting One-Dimensional Tables

To invert a one-dimensional table,

1 Ensure that your session contains two tables:

a The first 1D table that you want to invert, filled.
b Another 1D table with a different input, which you want to fill with the inverted

table.
2 Highlight the table that you want to invert.
3 Click  or select Table > Invert.

The Table Inversion dialog box appears.
4 CAGE selects a suitable table in the Table to fill list. Check that this is the table

that you want to fill, or select another.
5 The next control, Resolve non unique inverses with, specifies what CAGE should

do if it encounters multiple values. To minimize the error, leave the default, Least
squares. The options are:

• Least squares selects the range that produces the least error (see below; the
last page of the wizard plots the error metric).

 Inverting a Table

3-49



• Minimum selects the lower of the two if a given number has two possible inverses
(like selecting the negative square root of a number).

• Maximum selects the uppermost range if a given number has two possible inverses
(like selecting the positive square root of a number).

• Intermediate selects the middle range if a given number has more than two
possible inverses.

For example, the function y =x2 is impossible to invert over the range -1 to 1. You can
specify to invert the range from 0 to 1, sacrificing the inversion in the lower range, or
the reverse. To select the range from 0 to 1, highlight Maximum.

The display shows a comparison between the table (green) and the function
x = f-1(f(x)).

6 The lower pane of the dialog box has a plot that shows the inversion error. If desired,
you can change the plot type to view Input and Output. If your forward function is y
= f(x), and your inverse function is x = g(y), then, combining these, in an ideal world,
you should have x = g(f(x)). The plot then displays a line showing x against x and a
line showing x against g(f(x)). The closeness of these two lines indicates how good the
inversion has been: a perfect inverse would show the lines exactly on top of each
other.

The plot can show you which part of your table has not successfully inverted and
where you should try a different routine.

Note The least squares inversion routine tries to minimize the total distance
between these lines. This can sometimes lead to unexpected results. For example,
given the function f(x) = x^2 between -1 and 1, if you select either positive or
negative square root as the inverse, this induces a large error in the combined
inverse. If you choose g(y) = sqrt(y), then g(f(-1)) = 1, an error of 2. To minimize this,
the least squares routine might choose to send everything to zero and accept a
medium error over the whole range rather than a large error over half the range.
Use knowledge of the form of the table you are inverting to help you choose which
routine to select.

7 Click OK to accept the inversion or Cancel to ignore the result and return to the
original table.

3 Tables

3-50



Inverting Two-Dimensional Tables

To invert a two-dimensional table,

1 Ensure that your session contains two tables:

a The first table you want to invert.
b A second table with exactly one of the same inputs, which you want to fill with

the inverted table.
2 Highlight the table you want to invert.
3 Click  or select Table > Invert.

The Table Inversion dialog box appears.
4 CAGE selects a suitable table in the Table to fill list. Check that this is the table

that you want to fill, or select another.
5 The next control, Resolve non unique inverses with, specifies what CAGE should

do if it encounters multiple values. To minimize the error, leave the default, Least
squares. See inverting a 1D table for the other options.

6 The lower pane of the dialog box has a plot that shows the inversion error. If desired,
you can change the plot type to view the Input and Output. If the forward function is
z = f(x,y), and the inverse function is x = g(y,z), then, combining these, in an ideal
world you should have x = g(y,f(x,y)). The plot then displays a plane showing x
plotted against x and y, and a colored surface showing g(y,f(x,y)) plotted against x
and y. The closeness of these two planes indicates how good the inversion is. If you
want to improve the inversion in some areas, try other settings in Resolve non
unique inverses with.

Click OK to accept the result or Cancel to ignore the result and return to the
original table.

 Inverting a Table

3-51



Importing and Exporting Calibrations

In this section...
“Formats” on page 3-52
“Importing Calibrations” on page 3-52
“Exporting Calibrations” on page 3-54

Formats

You can import and export calibrations in various formats.

• You can import the following File formats:

• Simple MATLAB file
• Simple MAT file
• ATI Vision MAT file
• ETAS INCA DCM file (version 1)

• Or directly to/from ATI Vision (supported versions: 3.5.1, 3.5, 3.4 and 2006 SP2.1).

To use Vision, a license is required for the "Horizon Scripting/Remote API Toolkit".

Note Note to use the Vision interface you must first enter mbcconfig -
visioninterface at the command line.

You can export all the same formats, plus the simple CSV file format.

Importing Calibrations
1 Select a table.
2 Select File > Import > Calibration > File or ATI Vision.

Similarly, from the Calibration Manager, if you click Open Calibration File in the
toolbar, you can select File or ATI Vision in the dialog and proceed to import in
the same way.

3 Tables

3-52



3 If importing a file, a file browser dialog opens.

a Select the type of file you want from the Files of type drop-down list, or leave
the default All files (*.*) and CAGE will try to load the file based on the
file extension.

b Browse to the file and click Open to import.

If importing from .dcm, .mat or .m file, the Calibration Manager opens. See “Setting
Up Tables from a Calibration File” on page 3-27 for instructions.

If importing from ATI Vision, the ATI Vision Connection Manager dialog appears.

a The Computer field is optional. Leave this field blank if you are using Vision on
the local machine. If you want to connect to a remote machine, you can enter a
machine name or an IP address.

b Click Connect.

If Vision is already running on the machine that you try to connect to, MATLAB
connects to Vision. If Vision is not running then it is launched, typically with no
project loaded and with the application window invisible.

c If there is a project (.prj file) currently loaded in Vision it appears in the
Project field. If this field is blank then there is no project loaded. Type a project
file name to load that project. Note that the project file path is relative to the
machine on which Vision is running.

 Importing and Exporting Calibrations

3-53



d Select the appropriate Vision Device, Strategy and Calibration within your
project, and click OK to import.

The Calibration Manager opens. See “Setting Up Tables from a Calibration File”
on page 3-27 for instructions.

Exporting Calibrations

To export your calibration data,

1 Select File > Export > Calibration > Selected Item or All Items, or use the
toolbar button to export all calibration items.

The Export Calibration Data dialog appears.

3 Tables

3-54



2 Select the check boxes of the calibration items you want to export.

You can select all items of a single type by using the check boxes under the list — for
example select the 2D tables check box to select the check boxes of all 2D Tables in
the list.

If you chose to export All Items, all tables, normalizers, curves and constants in the
project are available in the list of calibration items.

If you chose to export Selected Item, the list items depend on which tree node you
have selected. For a table node, the list contains the table and its normalizers. For a
Feature or Tradeoff node, the list includes the whole feature or tradeoff (all tables,

 Importing and Exporting Calibrations

3-55



normalizers, curves and constants). For an optimization node, the list contains any
tables filled from the optimization results.

3 Select the format you want to export to:

• ATI Vision
• ATI Vision MAT file
• INCA DCM file
• Simple CSV file
• Simple MAT file
• Simple MATLAB file

Click OK to export your selected items.
4 If you selected ATI Vision, the ATI Vision Connection Manager dialog appears, as

for importing calibrations.

If you select a file format, a file browser appears. Choose a location and filename and
click Save.

When exporting to an existing calibration file, the exported items replace the existing
items. (There is no merging of existing items and new exported items.)

When exporting to Vision, the items in the CAGE project are matched by name with the
items in the Vision calibration and the values are replaced. It is not possible to add new
items to a Vision project by exporting from CAGE.

3 Tables

3-56



Feature Calibrations

This section includes the following topics:

• “About Feature Calibrations” on page 4-2
• “Set Up a Feature Calibration” on page 4-11
• “Import a Strategy from Simulink” on page 4-15
• “Optimize Table Values” on page 4-24
• “Initialize Tables and Normalizers” on page 4-34
• “Optimize Normalizer Breakpoints” on page 4-38
• “Compare the Strategy and the Model” on page 4-46

4



About Feature Calibrations

In this section...
“What Are Feature Calibrations?” on page 4-2
“Procedure for Feature Calibration” on page 4-2
“How CAGE Optimizes Normalizer Breakpoints” on page 4-5
“How CAGE Optimizes Table Values” on page 4-9

What Are Feature Calibrations?

A 'feature' calibration is the process of calibrating lookup tables and their normalizers by
comparing an ECU strategy (represented by a Simulink diagram) to a model.

The strategy is an algebraic collection of lookup tables. It is used to estimate signals in
the engine that cannot be measured and that are important for engine control.

CAGE calibrates an electronic control unit (ECU) subsystem by directly comparing it
with a plant model of the same feature.

There are advantages to feature calibration compared with simply calibrating using
experimental data. Data is noisy (that is, there is measurement error) and this can be
smoothed by modeling; also models can make predictions for areas where you have no
data. This means you can calibrate more accurately while reducing the time and effort
required for gathering experimental data.

Procedure for Feature Calibration

The basic procedure for performing feature calibrations is as follows:

1 Set up the variables and constants. (See “Setting Up Variable Items” on page 2-8.)
2 Set up the model or models. (See “Setting Up Models” on page 2-16.)

4 Feature Calibrations

4-2



1. Set up the variables.

2. Set up the models.

3 Set up the feature calibration. (See “Set Up a Feature Calibration” on page 4-11.)
4 Initialize the feature. See “Initialize Tables and Normalizers” on page 4-34
5 Calibrate the normalizers. (See “Optimize Normalizer Breakpoints” on page 4-38.)
6 Calibrate the entire feature and view the results. Optionally you can calibrate the

tables individually. (See “Optimize Table Values” on page 4-24.)
7 Export the normalizers, tables, and features. (See “Importing and Exporting

Calibrations” on page 3-52.)

 About Feature Calibrations

4-3



3. Set up the feature
calibration.

7. Export the
calibration.

6. Calibrate
the feature.

5. Calibrate the tables. 4. Calibrate the normalizers.

The normalizers, tables, and features form a hierarchy of nodes, each with its own view
and toolbar. The feature view is shown.

Working With Feature Tables

After you set up your session and your tables, you can calibrate your tables.

Highlight a table in the tree display to see the Table view. For more information about
the Table view, see “Editing Tables” on page 3-12.

In CAGE, a table is defined to be either a one-dimensional or a two-dimensional lookup
table. One-dimensional tables are sometimes known as characteristic lines or functions.
Two-dimensional tables are also known as characteristic maps or tables.

Each lookup table has either one or two axes associated with it. These axes are
normalizers. See “About Normalizers” on page 3-39 for more information.

For example, a simple MBT feature has two tables:

4 Feature Calibrations

4-4



• A two-dimensional table with speed and relative air charge as its normalizer inputs
• A one-dimensional table with AFR as its normalizer input

Before you can calibrate your tables, you must calibrate your normalizers. For
information, see “Optimize Normalizer Breakpoints” on page 4-38.

This section describes how you can use CAGE to fill your lookup tables by reference to a
model.

To fill the table values, either click the buttons in the toolbar, , or select
from the following options in the Table menu:

• Initialize Table

Sets each cell in the lookup table to a specified value. For information, see
“Initializing Table Values” on page 4-36.

• Fill Table

Fills and optimizes the table values by reference to the model. For information, see
“Filling and Optimizing Table Values” on page 4-24.

• Fill by Inversion

Fills the table by creating an inversion of another table. For information, see
“Inverting a Table” on page 3-47.

• Fill by Extrapolation

Fills the table values based on the cells specified in the extrapolation mask. You can
choose values in cells that you trust to define the extrapolation mask and fill the rest
of the table using only those cells for extrapolation. For information, see “Filling
Tables by Extrapolation” on page 4-32.

How CAGE Optimizes Normalizer Breakpoints

Optimizing breakpoints alters the position of the table normalizers so that the total
square error between the model and the table is reduced.

This routine improves the fit between your strategy and your model. The following
illustration shows how the optimization of breakpoint positions can reduce the difference

 About Feature Calibrations

4-5



between the model and the table. The breakpoints are moved to reduce the peak error
between breakpoints. In CAGE this happens in two dimensions across a table.

To see the difference between optimizing breakpoints and optimizing table values,
compare with the illustration in “How CAGE Optimizes Table Values” on page 4-9.

See “Filling Methods” on page 4-6 for details on how the optimal breakpoint spacing is
calculated.

Filling Methods

This section describes in detail the methods for spacing the breakpoints of your
normalizers in CAGE.

• For one-dimensional tables, the two fill methods are

• ReduceError on page 4-7
• ShareAveCurv on page 4-7

• For two-dimensional tables, the two fill methods are

• ShareAveCurv on page 4-7
• ShareCurvThenAve on page 4-7

4 Feature Calibrations

4-6



ReduceError

Spacing breakpoints using ReduceError uses a greedy algorithm:

1 CAGE locks two breakpoints at the extremities of the range of values.
2 Then CAGE interpolates the function between these two breakpoints.
3 CAGE calculates the maximum error between the model and the interpolated

function.
4 CAGE places a breakpoint where the error is maximum.
5 Steps 2, 3, and 4 are repeated.
6 The algorithm ends when CAGE locates all the breakpoints.

ShareAveCurv and ShareCurvThenAve

Consider calibrating the normalizers for speed, N, and relative air-charge, L, in the
preceding MBT model.

In both cases, CAGE approximates the MBTAV(N, L) model, in this case using a fine
mesh.

The breakpoints of each normalizer are calibrated in turn. In this example, these
routines calibrate the normalizer in N first.

Spacing breakpoints using ShareAveCurv or ShareCurvThenAve calculates the
curvature, K, of the model MBTAV(N, L),

as an approximation for

Both routines calculate the curvature for a number of slices of the model at various
values of L. For example, the figure shown has a number of slices of a model at various
values of L.

 About Feature Calibrations

4-7



Then

• ShareAveCurv averages the curvature over the range of L, then spaces the
breakpoints by placing the ith breakpoint according to the following rule.

• ShareCurvThenAve places the ith breakpoint according to the rule, then finds the
average position of each breakpoint.

Rule for Placing Breakpoints

If j breakpoints need to be placed, the ith breakpoint, Ni, is placed where the average
curvature so far is

Essentially this condition spaces out the breakpoints so that an equal amount of
curvature (in an appropriate metric) occurs in each breakpoint interval. The breakpoint
placement is optimal in the sense that the maximum error between the lookup table
estimate and the model decreases with the optimal convergence rate of O(N-2). This
compares with an order of O(N-1/2) for equally spaced breakpoints.

The theorem for determining the position of the unequally spaced breakpoints is from the
field of Approximation Theory — page 46 of the following reference: de Boor, C., A
Practical Guide to Splines, New York, Springer-Verlag, 1978.

4 Feature Calibrations

4-8



How CAGE Optimizes Table Values

The Feature Fill Wizard optimizes the table values to minimize the current total square
error between the feature values and the model.

This routine optimizes the fit between your strategy and your model. Using Fill places
values into your table. The optimization process shifts the cell values up and down to
minimize the overall error between the interpolation between the model and the
strategy.

This process is illustrated by the following example; the green shaded areas show the
error between the mesh model (evaluated at the number of grid points you choose) and
the table values.

To see the difference between optimizing table values and optimizing the positions of
breakpoints, compare with the illustration in “How CAGE Optimizes Normalizer
Breakpoints” on page 4-5.

CAGE evaluates the model over the number of grid points specified in the Feature Fill
Wizard, then calculates the total square error between this mesh model and the feature
values. CAGE adjusts the table values until this error is minimized, using lsqnonlin if

 About Feature Calibrations

4-9



there are no gradient constraints, otherwise fmincon is used with linear constraints to
specify the gradient of the table at each cell.

See Also

• Reference page for lsqnonlin
• “Optimize Table Values” on page 4-24

4 Feature Calibrations

4-10



Set Up a Feature Calibration

In this section...
“Procedure Overview” on page 4-11
“Adding a Feature” on page 4-12
“What Is a Strategy?” on page 4-12
“Working With Features” on page 4-12

Procedure Overview

A feature calibration is the process of calibrating lookup tables and their normalizers by
comparing a collection of lookup tables to a model. The collection of lookup tables is
determined by a strategy.

A feature refers to the object that contains the model and the collection of lookup tables.
For example, a simple feature for calibrating the lookup tables for the maximum brake
torque (MBT) consists of

• A model of MBT
• A strategy that adds the two following tables:

• A speed (N), load (L) table
• A table to account for the behavior of the air/fuel ratio (A)

Having already set up your variable items and models, you can follow the procedure
below to set up your feature calibration:

1 Add a feature. This is described in the next section, “Adding a Feature” on page 4-
12.

2 Set up your strategy. See “Import a Strategy from Simulink” on page 4-15.
3 Initialize tables. See “Initialize Tables and Normalizers” on page 4-34
4 Optimize normalizer breakpoints. See “Optimize Normalizer Breakpoints” on page 4-

38.
5 Fill the feature. See “Optimize Table Values” on page 4-24

 Set Up a Feature Calibration

4-11



Adding a Feature
A feature consists of a model and a collection of lookup tables, organized in a strategy.

To add a feature to your session, select File -> New -> Feature. This automatically
switches you to the Feature view and adds an empty feature to your session.

An incomplete feature is a feature that does not contain both an assigned model and a
strategy. If a feature is incomplete, it is displayed as  in the tree display. If a feature is
complete, it is displayed as  in the tree display.

What Is a Strategy?
A strategy is an algebraic collection of tables, and forms the structure of the feature.

For example, a simple strategy to calibrate a feature for MBT adds two tables:

• A table ranging over the variables speed and load
• A table to account for the behavior of the model as the AFR varies

To evaluate the feature side by side with the model, you need to have a strategy that
takes some or all of the same variables as the model. The strategy is expressed using
Simulink diagrams. You can either import a strategy or you can construct a strategy.

For details on importing, constructing and exporting strategies with CAGE, see “Import
a Strategy from Simulink” on page 4-15.

Working With Features
After you import a strategy, you can use the Feature view to calibrate the entire feature,
that is, fill all the table values by referring to a model.

The parts of the Feature view include

1 The Strategy for the selected feature. This is the algebraic collection of the tables
and inputs that you are using to calibrate the selected feature.

2 The Feature Fill Settings pane, where you can run and manage saved fill settings
from previous feature filling.

3 The Feature Tables pane, where you can view and open all the tables in your
feature. Double-click a table to change the view to that table.

4 Feature Calibrations

4-12



4 The Feature History pane, which displays the history of the feature.

Use the Feature menu to control your strategy and initialize and fill the tables in your
strategy:

• Select Filling Item

You can use this to select the correct model or data for your feature, or you can set
this up during the Feature Fill Wizard steps if you select Feature > Fill.

• Convert to Model

 Set Up a Feature Calibration

4-13



Takes the current feature and converts it to a model, which you can view by clicking
the Model button.

• Graphical Strategy Editor

Opens your current strategy for editing. For more information, see “What Is a
Strategy?” on page 4-12.

• Parse Strategy Diagram

Performs the same function as double-clicking the blue outport of your strategy
diagram. For more information, see “What Is a Strategy?” on page 4-12.

• Clear Strategy

Clears the current strategy from your feature.
• Initialize

Initializes the feature; also in the toolbar. See “Initialize Tables and Normalizers” on
page 4-34 for details.

• Fill

Fills and optimizes the feature; also in the toolbar. See “Filling and Optimizing Table
Values” on page 4-24 for details.

• Use the Fill Settings items to control your saved fill settings from previous feature
filling. You can run your existing fill settings, duplicate and create new fill settings,
and delete fill settings. You can also use the buttons in the Feature Fill Settings pane
to manage your fill settings. See “Saving and Reusing Feature Fill Settings” on page
4-31.

4 Feature Calibrations

4-14



Import a Strategy from Simulink
In this section...
“Import a Strategy” on page 4-15
“Model Structure and Strategy Hierarchy” on page 4-16
“Tables, Normalizers, and Constants” on page 4-16
“Block Support” on page 4-18
“Loop Handling” on page 4-19
“Importing Older Strategies” on page 4-19
“Constructing a Strategy” on page 4-20
“Exporting Strategies” on page 4-23

Import a Strategy
1 Highlight the top feature node in the tree display.
2 Select File > Import > Strategy.
3 Select the appropriate Simulink model file. CAGE checks the strategy.

If there is a single outer outport, CAGE automatically imports the strategy.
4 If there are multiple outer outports, CAGE prompts you to either:

• Import all outports into separate features.
• Manually select a single outport. Outport blocks are highlighted in blue. Double-

click the outport to import.
5 If there are problems importing the strategy, CAGE reports them. If possible, CAGE

asks what you want to do. For examples, see “Names and Reuse of Tables,
Normalizers, and Constants” on page 4-16.

If parsing the Simulink diagram fails and you see an error message, then any
changes in the current CAGE project are discarded. You can then correct the
Simulink diagram and reparse it.

To view a text representation of your strategy, select the Feature node. Your strategy is
represented in the Strategy pane. Select View > Full Strategy Display to switch
between the full description and the simplified expression. You can select and copy the
strategy equation to the Clipboard.

 Import a Strategy from Simulink

4-15



For information about using Simulink to amend strategies, see “Constructing a Strategy”
on page 4-20.

The following sections describe the rules for CAGE parsing Simulink models to create
features.

Model Structure and Strategy Hierarchy
• CAGE uses the Subsystem hierarchy in the Simulink model to generate subfeatures

in CAGE. This makes it easier to understand the structure of the strategy and relate
it to the Simulink model. However, be aware how CAGE creates subfeatures from
Simulink models:

• When a subsystem has more than one outport, CAGE adds the outport name to
the subsystem for the subfeature name. Rename an outport before importing if you
want a particular name for the CAGE subfeature. CAGE creates unique names.

• CAGE creates a subfeature from outports in subsystems. CAGE works backwards
from outports and includes all input blocks to the outport in the subfeature. This
can include blocks outside the subsystem. Subfeatures are not identical to
Simulink subsystems.

• CAGE shows the subfeature hierarchy in the Feature tree. Each subfeature is also
visible at the top level of the tree.

Tables, Normalizers, and Constants
• “Names and Reuse of Tables, Normalizers, and Constants” on page 4-16
• “Table and Normalizer Structure” on page 4-17
• “Data Import” on page 4-18

Names and Reuse of Tables, Normalizers, and Constants

• CAGE determines table and normalizer names from parameter variable names rather
than the block name, provided the Simulink parameter is a valid variable name and
not a MATLAB expression. This supports table reuse and avoids the need for explicit
normalizer blocks.

• For constants, CAGE uses the block name or constant variable name if defined.
Constants are reused if they have the same name as an existing constant and the
value is the same.

4 Feature Calibrations

4-16



• If a table of the same name already exists in the project and the input expressions for
these tables are the same, then the table is automatically reused. Similarly,
normalizers are reused if they have the same inputs as the existing normalizer.

If a table of the same name already exists in project and the new table has different
inputs, then CAGE asks what option you want:

• Create a new table with a different name (suffix _1).
• Reconnect the table inputs using the current Simulink block connections. This

changes all other instances of the table.
• Cancel. You can then edit the model to resolve differences if desired.

Table and Normalizer Structure

• Shared normalizers can be used as inputs to multiple tables. You can view shared
normalizers at the top of the CAGE Table tree.

• You can create 1D tables with or without normalizers. If you add a CAGE Function
block from cgeqlib with no normalizer, a 1D lookup table with an internal
normalizer is created on parsing. If the Function block has a normalizer as its input,
then you can use shared normalizers (from the list of available normalizers in CAGE).
After creation, you cannot change from using shared normalizers to internal
normalizers.

• 2D lookup tables always have shared normalizers. If the input to the Table block is
not a normalizer, then CAGE creates a normalizer when the strategy is parsed.

CAGE assigns normalizer names using the lookup table breakpoint (or row/column
index) variable names if available. If the breakpoints are defined by an expression
and not a variable, then CAGE names normalizers using the form tablename_normY
or tablename_normX.

• If you change the name of inports, table or normalizer blocks for blocks associated
with existing CAGE items, then the CAGE item’s name is changed. The name is
unique for the current CAGE project (suffixes _1 are added if necessary to create a
unique name).

• Prelookup tables must feed into an Interpolation block using a Prelookup block.
• Normalizer blocks, if used, must be inputs to tables.

 Import a Strategy from Simulink

4-17



Data Import

• Table and normalizer data is imported from Simulink.

You must be able to run Update Diagram on the Simulink model and the data must
have a single source (base workspace, model workspace, mask workspace for a single
block). Otherwise, table data is left empty and you must set up the tables,
normalizers, and constants using the Calibration Manager.

• Constant data is read from Constant or Gain blocks.

For data export, see “Exporting Strategies” on page 4-23.

Block Support

• Math Operations library: CAGE supports a subset of Simulink blocks. Open the
cgeqlib library to view the supported blocks.

• Switch blocks: CAGE can import the Simulink Switch block and MultiportSwitch
block. Note that when you import the Switch block, CAGE converts it to a CAGE
block called IfExpr. You can view this block in the cgeqlib library.

• Logic and Boolean expressions: CAGE can import the Logical Operator and Relational
Operator blocks.

• Polynomial expressions: CAGE builds polynomial expressions using Horner’s form
(product and sum blocks).

• Dot Product block. This allows the implementation of weighted sum expressions.
• Interpreted MATLAB Function block. You can use this to implement more general

functions in CAGE features. The function must be vectorized. That is, it must accept
matrix inputs of the form ([u1,u2,u3,…,un]).

• Fcn block: CAGE converts the expression to a MATLAB vectorized form. You can use
( ) or [ ] indexing of input.

• Signal conditioning blocks are ignored. Several standard Simulink blocks are for
conditioning signals, but these can be ignored for the purposes of steady state
analysis in CAGE. These blocks include the signal conversion, rate transition, data
type conversion and initial condition block. CAGE ignores them, making it easier to
import existing strategy diagrams.

• Merge and If blocks: CAGE supports Merge blocks fed by enabled or If/ElseIf/Else
subsystems, that are quite common in industry models.

4 Feature Calibrations

4-18



Only scalar inputs are supported except for the following blocks. The Fcn, Dot Product,
Polynomial, and Interpreted MATLAB Function blocks all accept multiple inputs as
inputs to the expression (e.g., u(1)+u(2)).

Loop Handling

CAGE cannot handle expressions with loops. If CAGE detects a loop, then CAGE asks if
you want to break the loop by introducing a variable called previousOutportName.
CAGE needs to do this to import the strategy and enable feature filling. If possible,
CAGE tries to break loops at a feature boundary (e.g., a top level or subsystem output).

If you decide not to break the loop, the error message then informs you which blocks are
involved in the loop.

CAGE ignores delay blocks and resettable delay blocks to facilitate loop parsing.

Importing Older Strategies

If you need to parse strategies from previous releases, you can use the function
cgStrategyTables to set the style for strategy parser behavior. Use this function if you
need to import any older strategies saved as Simulink model files.

• For strategies in R2013a or later, CAGE interprets the first input to a 2D lookup table
as Y (rows). Previously, CAGE parsed the first input as columns and the second as
rows. Use the cgStrategyTables backward compatibility modes if needed for
previously saved strategies.

• For strategies from R2008a to R2012b, lookup table blocks are always interpreted as
lookup tables, because there are separate lookup and normalizer blocks. In R2008a, a
normalizer block was added to the cgeqlib library.

Set the parser style to R2008a as follows:

cgStrategyTables('R2008a') 
• For strategies older than R2008a, CAGE interprets 1D tables as normalizers if they

feed into a lookup table.

If you need to parse pre-R2008a strategies, use the function as follows:

cgStrategyTables('Pre-R2008a') 

 Import a Strategy from Simulink

4-19



This reverts the parser behavior to the pre-R2008a interpretation of 1D lookup
tables.CAGE issues a warning when converting a 1D table to a normalizer. You can
turn the warning off as follows:

warning off mbc:cgslparser:ObsoleteNormalizer
• If you need to reset the parser style to R2013a and later, use:

cgStrategyTables('R2013a') 
• To query the current strategy table style, enter:

Style = cgStrategyTables

Constructing a Strategy

To construct a strategy from CAGE rather than import an existing model:

1 Highlight the correct feature by selecting the Feature node.
2 Select Feature > Graphical Strategy Editor or press Ctrl+E.

Three Simulink windows open:

• The strategy window for editing your strategy.

4 Feature Calibrations

4-20



• A library window, cgeqlib, with all the blocks available for building a strategy.

• A library window with all existing blocks in your CAGE project, organized in
libraries. The blocks are From blocks referencing the CAGE items such as tables
and normalizers.

 Import a Strategy from Simulink

4-21



3 In the strategy window, build your strategy using the blocks in the library windows.
To perform a feature calibration, the strategy and the model must have some
variables in common.

4 Double-click the blue outport circle to parse the strategy into the CAGE session.

Note This closes all three Simulink windows and parses your strategy into the
feature.

The cgeqlib library contains all the blocks available for building a strategy.

Block Highlighting

CAGE highlights blocks as follows while you construct a strategy, and when you open the
graphical strategy editor after importing a strategy. You also see this highlighting if you
export a strategy. Tables in the current CAGE session are dark green. Subfeatures are
bright green. A black table block signifies that CAGE does not yet know about it — either
a new table will be created in CAGE on import, or an existing table can be reused. See
“Names and Reuse of Tables, Normalizers, and Constants” on page 4-16. If you copy a
CAGE table block, the new block color changes to black.

Normalizers in the current CAGE session are light blue. A black Normalizer block
signifies that CAGE does not yet know about it, like black table blocks.

4 Feature Calibrations

4-22



Simple Strategy Example

In the matlab\toolbox\mbc\mbctraining folder, there is a Simulink model file called
tutorial. Create a new feature, then import the example strategy by selecting File >
Import > Strategy.

View the strategy by selecting Feature > Graphical Strategy Editor. The diagram
opens.

Exporting Strategies

Simulink strategies can be exported. For example, you might want to:

• Include a strategy in a Simulink vehicle model.
• Compile the strategy using Simulink Coder™ to produce C code.
• Evaluate the strategy using Simulink.

To export a strategy from CAGE:

1 Highlight the Feature node that contains the strategy that you want to save.
2 Select File > Export > Strategy.
3 Assign a name for your strategy.

The strategy is saved as a Simulink model file.

On export, table data is stored in variables. Indices are written to Simulink parameters
using colon expressions.

• 0:size (Table,1)-1, 0:size (Table,2)-1, TableName for 2D lookup tables.
• 0: length (Table)-1, TableName for 1D lookup tables with shared normalizers.
• NormalizerName and TableName for 1D lookup tables.
• NormalizerName, 0:length(Normalizer)-1

The data is stored in the model workspace. The model workspace data is copied to the
new model when you copy the strategy block. You must be able to run Update Diagram
on the Simulink model or the copy process will not work. A Model-Based Calibration
Toolbox function is used for copying data which means that the toolbox is required to
make a copy of the strategy model.

 Import a Strategy from Simulink

4-23



Optimize Table Values
In this section...
“Filling and Optimizing Table Values” on page 4-24
“Saving and Reusing Feature Fill Settings” on page 4-31
“Filling Tables by Extrapolation” on page 4-32

Filling and Optimizing Table Values

Use the Feature Fill Wizard to fill and optimize the values in tables by reference to the
model or data. You can fill multiple tables at once using the wizard, and you can Fill
from the top feature node or from any table node in a feature. Use Fill at the top feature
node to calibrate the entire feature, that is, fill all the table values by referring to a
model.

Before using the Feature Fill Wizard,

• Your project must contain a feature and a model.
• You need to initialise your tables, unless you imported your strategy with tables

already initialised. See “Initialize Tables and Normalizers” on page 4-34.
• If you want to optimize the breakpoints for the normalizers, you should do this before

optimizing table values using the Feature Fill Wizard. See “Optimize Normalizer
Breakpoints” on page 4-38.

When filling with reference to a model, the Feature Fill Wizard optimizes the table
values to minimize the current total square error between the feature values and the
model. This routine optimizes the fit between your strategy and your model. Using Fill
places values into your table. The optimization process shifts the cell values up and down
to minimize the overall error between the interpolation between the model and the
strategy. To learn more about the filling processes, see “How CAGE Optimizes Table
Values” on page 4-9.

CAGE projects store last-used feature filling settings for tables, models, data, and
optimizations. This can save time if you need to use the Feature Filling Wizard
repeatedly with slightly different settings. You can remove saved fill settings by selecting
Feature > Reset Fill Settings.

To fill feature tables, perform the following steps:

4 Feature Calibrations

4-24



1
Click  or select Table > Fill. This opens the Feature Fill Wizard.

Screen 1: Select tables to fill.

Select the check boxes of the tables you want to fill. For each table you can set the
following options:

• Clear Mask — select this check box to clear any table mask and fill all unlocked
table cells (locked cells are never altered). Clear this check box to fill unlocked
cells in the current extrapolation mask only, or all unlocked cells if there is no
mask.

• Extrapolate — select this to extrapolate across the whole table after filling cells.
The extrapolation is based on the filled cells in the mask and any locked cells.

• Table Bounds — enter values here to set bounds on the table values
• Gradient Bounds — enter values here to set bounds on the gradient (slope)

between rows (left edit box) and between columns (right edit box). For example,
entering 0 Inf in the left edit box imposes the constraint that the gradient must
be positive (increasing) between successive rows.

When you have selected filling options for each table, click Next.

 Optimize Table Values

4-25



2 Choose filling items and links.

• Click the top Select to choose an item to fill the tables from. A dialog box opens
where you can select a model or variable. You can only choose a variable if you
have a suitable data set available containing some of the inputs to the feature.

The feature filler adjusts the table cells so that the value of the feature across the
range of inputs best matches the value of the filling item (model or data).

• Click the Constraint Select to choose a constraint to use in the filling process.
You can use Linear, 1–D table, 2–D table, ellipsoid and model constraints (see
“Edit Constraint” on page 6-55). The feature filler limits its activity to within
this constraint, for example, the boundary constraint of a model. While boundary
models are often used as model constraints in this setting you can use any model.
For example, you can use a function that returns a logical output (true for valid,
false for invalid) by setting up the model constraint >=0.5.

• Click Link to associate a model, feature or table (selected on the right side) with
a variable (selected on the left side). Linking replaces the variable inputs to any
relevant models and features with the linked item. This enables useful operations
such as feeding a table into a model, for example, an optimal cam schedule into a
torque model, without needing to make a separate function model. Click Unlink
to disassociate any pair.

4 Feature Calibrations

4-26



Click Next.
3 Set variable values. Select Data source: Grid or Data set. The data set option is

only available if there is a suitable data set available containing some of the inputs
to the feature.

When filling from a model, you can use a Grid or Data set for the data source.

When filling from a variable, you must fill from a Data set, so you cannot choose
Grid.

• Grid settings

You can define your own grid, use table normalizers, or use normalizers as a
starting point and choose to interleave values between breakpoints.

By default the wizard selects the table's normalizer breakpoints and the set
points of other variables, so the number of grid points is the number of table cells.
To increase the grid size you can enter more points for variables by editing the
Value fields, or you can interleave values between breakpoints (see below).
Increasing the number of grid points increases the quality of the approximation
and minimizes interpolation error, but also increases the computation time.

 Optimize Table Values

4-27



• You can edit grid variable values manually, or you can click the Initialize
From Normalizer button to use breakpoints of normalizers as a variable's
value. In the dialog box where you can select normalizers, you can also choose
to interleave values between breakpoints. Interleaving values can minimize
interpolation error by adding values between each normalizer value. In this
way you can create a grid of more points than table cells to optimize over.
Select normalizers in the dialog box to use those breakpoints as a variable's
value.

In this dialog box, you can enter a value in the Number of values between
breakpoints edit box to add values between breakpoints. By default, the
feature filler compares the feature and model at the table breakpoints. Choose
a positive value to compare the feature and model on a finer grid. A positive
value further enhances the comparison between feature and model to account
also for errors introduced by linear interpolation in the table (see “How CAGE
Optimizes Table Values” on page 4-9). A value of 1 inserts one grid point
between each pair of breakpoints, and so on. Click OK to return to the
Feature Fill Wizard.

• Edit set point values in the Value fields to optimize over a range rather than
at a single point. If you choose a range of values the table will be filled using
the average model value at each cell. For example, if you enter -5:5:50 for
the variable spark, the optimization of table values will be carried out at
values of spark between -5 and 50 in steps of 5 degrees.

• Data Set settings.

If you have multiple data sets, select the filling data set from the Data set drop
down list.

When filling from a Data Set, the wizard displays the values in your selected
data set, and the set points of any other required variables. You cannot edit the
variable values.

4 Feature Calibrations

4-28



Click Next.
4 Fill Tables. Click Fill Tables to fill the tables.

CAGE evaluates the model over the number of grid points specified, then calculates
the total square error between this mesh model and the feature values. CAGE
adjusts the table values until this error is minimized, using lsqnonlin if there are
no gradient constraints, otherwise fmincon is used with linear constraints to specify
the gradient of the table at each cell.

The graph shows the change in RMSE as the optimization progresses.

 Optimize Table Values

4-29



• You can enter a value in the Smoothing edit box to apply a smoothing penalty to
the optimization. The Smoothness penalty uses the second derivative to avoid
steep jumps between adjacent table values. There is a penalty as smoothing
trades smoother tables for increased error. Enter a smoothing factor (0–Inf) and
click Fill Tables to observe the difference in the resulting RMSE and the table
shape. Keep increasing the value until you reach the required smoothness. If you
go too far the results will be a flat plane.

• Select the Create dataset check box to create a dataset containing the output
values at each specified grid point.

• Select the Feature model check box to create a feature model (on finishing the
feature fill wizard) that is a static snapshot of the feature with its links included
inside the feature model. If these links are features then the link is bundled up
within the feature model of the feature being filled.

• Select the Fill model with links check box to create a model (on finishing the
feature fill wizard) that is a static snapshot of the fill model with its links
connected to the model inputs (visible in the Connections diagram, in the Models
view).

4 Feature Calibrations

4-30



• Select the remaining check boxes to display plots when you close the Wizard. You
can see plots of error against all the variables (Plot), error between feature and
model (Error), table surface and error surface.

You can click Back to return to previous screens and fill more tables, or you can
click Finish. When you click Finish to dismiss the wizard, the plots with selected
check boxes appear.

When you have completed a calibration, you can export your feature. For information,
see “Importing and Exporting Calibrations” on page 3-52.

Saving and Reusing Feature Fill Settings

After feature filling, your settings are remembered by the Feature Fill Wizard and saved
in the Feature Fill Settings pane in the Feature view. You can run and manage your
saved fill settings from the Feature Fill Settings pane.

• The Feature Fill Settings table displays all saved fill settings for the selected feature.
• If you select Feature > Fill Feature (or the toolbar button) and there are no saved

settings, after you run the wizard a new fill settings row appears in the table.
• If you select Feature > Fill Feature (or the toolbar button) and you have selected a

saved fill setting, you open the Feature Fill wizard with those settings.
• To define new fill settings starting from the defaults, select Feature > New Fill

Setting or click the New button next to the table in the Feature Fill Settings pane.
This opens the Feature Fill Wizard with no saved settings, and creates a new saved
fill setting in the table.

• To rerun a particular saved setting, double-click the item in the Feature Fill Settings
pane. The Feature Fill Wizard opens with your saved settings selected, so you can
click Next to reach the Fill Tables screen and fill the tables again.

• To rerun all saved fill settings in your feature, select Feature > Run All Fill
Settings.

• To copy and modify some saved settings, select the row in the Feature Fill Settings
and select Feature > Duplicate Selected Fill Setting or click the Duplicate button
next to the table. Double-click the new settings to open the Feature Fill Wizard and
make any desired changes in the wizard screens.

• To delete all saved fill settings for the selected feature, select FeatureClear All Fill
Settings.

 Optimize Table Values

4-31



Filling Tables by Extrapolation

Filling a table by extrapolation fills the table with values based on the values already
placed in the extrapolation mask. The extrapolation mask on page 4-32 is described
below. You can also choose to extrapolate automatically after filling cells in the mask in
the “Filling and Optimizing Table Values” on page 4-24.

To fill a table by extrapolating over a preselected mask, click  or select Table >
Extrapolate .

This extrapolation does one of the following:

• If the extrapolation mask has only one value, all the cell values change to the value of
the cell in the mask.

• If the extrapolation mask has two or more colinear values, the cell values change to
create a plane parallel to the line of values in the mask.

• If the extrapolation mask has three or more coplanar values, the cell values change to
create that plane.

• If the extrapolation mask has four or more ordered cells (in a grid), the extrapolation
routine fills the cells by a grid extrapolation.

• If the extrapolation mask has four or more unordered (scattered) cells, the
extrapolation routine fills the cell values using a thin plate spline interpolant (a type
of radial basis function).

Using the Extrapolation Mask

The extrapolation mask defines a set of cells that form the basis of any extrapolation.

For example, a speed-load (or relative air charge) table has values in the following ranges
that you consider to be accurate:

• Speed 3000 to 5000 rpm
• Load 0.4 to 0.6

You can define an extrapolation mask to include all the cells in these ranges. You can
then fill the rest of your table based on these values.

To add or remove a cell from the extrapolation mask,

4 Feature Calibrations

4-32



1 Right-click the table.
2 Select Add To Extrapolation Mask or Remove From Extrapolation Mask from

the menu.

Cells included in the extrapolation mask are colored yellow.

Creating a Mask from the Boundary Model or Predicted Error

You can automatically generate an extrapolation mask based on the boundary model or
prediction error. Prediction error (PE) is the standard deviation of the error between the
model and the data used to create the model.

To generate a mask automatically,

1 Select Table > Extrapolation Mask > Generate From Boundary Model or
Generate From PE

2 If you select PE, a dialog appears where you must set the PE threshold to apply, and
click OK.

The cells in the table either within the boundary model or where the prediction error is
within the threshold now form the extrapolation mask, and thus are colored yellow.

 Optimize Table Values

4-33



Initialize Tables and Normalizers
In this section...
“Initializing a Feature” on page 4-34
“Initializing Breakpoints” on page 4-36
“Initializing Table Values” on page 4-36

Initializing a Feature

Note You might not need to initialize your tables if you imported your strategy with
tables already initialized. If so, proceed to the Feature Fill Wizard to fill your tables. See
“Optimize Table Values” on page 4-24. If you want to initialize, continue reading the
current page.

You can initialize a feature to set the values of the normalizers over the range of each
variable and put specified values into each cell of the tables. A table that is already
initialized provides a useful starting point for a more detailed calibration.

For example, a simple feature for maximum brake torque (MBT) consists of the following
tables:

• A speed (N), load (L) table
• A table to account for the behavior of air/fuel ratio (A)

Initializing this feature sets the values of the normalizers for speed, load, and AFR over
the range of each variable and put specified values into each cell of the two tables.

To initialize the feature, perform the following steps:

1 Click . This opens the Feature Initialization Options dialog box, as shown.

4 Feature Calibrations

4-34



2 Enter the ranges for the breakpoints in your normalizers. In the preceding example,
these are the breakpoint ranges:

• L has range 0.2 0.811.
• N has range 750 6500.
• A has range 11 17.6.

3 Enter the initial table value for each cell in each table. Above, the cell values are

• Table_NL has initial value 0.
• Fn_A has initial value 0.

4 Click OK to initialize the feature.

 Initialize Tables and Normalizers

4-35



Note The default values in this dialog box are taken from the variable dictionary. If
you clear any Enable box, the associated table or normalizer is left unchanged.

Initializing Breakpoints

You can initialize normalizer breakpoints individually if desired, or initialize the whole
feature (see “Initializing a Feature” on page 4-34). Initializing the breakpoints places the
breakpoints at even intervals along the range of the variable defined for the normalizer.
When you add a table and specify the inputs in the Table Setup dialog, CAGE
automatically initializes the normalizers of the table by spacing the breakpoints evenly
over the ranges of the selected input variables. If you have edited breakpoints you can
return to even spacing by using the Initialize function.

To space the breakpoints evenly,

1 Click  on the toolbar or select Normalizer > Initialize.
2 In the dialog box, enter the range of values for the normalizer.
3 Click OK.

For example, for a torque table with two normalizers of engine speed and load, you can
evenly space the breakpoints of both normalizers over the range 500  rpm to 6500 rpm for
speed and 0.1 to 1 for the relative air charge. To do this, in the dialog box you enter
500 6500 for the speed normalizer, N, , and 0.1 1 for the load normalizer, L.

Initializing Table Values

You can initialize tables individually if desired, or initialize the whole feature (see
“Initializing a Feature” on page 4-34). Initializing table values sets the value of every cell
in the selected table to a constant. You can do this when you set up a table (see “Adding,
Duplicating and Deleting Tables” on page 3-9) or later.

To initialize the values of the table,

1 Click  or select Table > Initialize.
2 In the dialog box that appears, select the constant value that you want to insert into

each cell.

When initializing tables, you should think about your strategy. Filling with zeros can
cause a problem for some strategies using "modifier" tables. For example, your strategy

4 Feature Calibrations

4-36



might use several speed-load tables for different values of AFR, or you might use an AFR
table as a "modifier" to add to a single speed-load table to adjust for the effects of
different AFR levels on your torque output.

Be careful not to initialize modifier tables with 0 if they are multipliers in your strategy.
In this case, solving results in trying to divide by zero. This operation will fail. If your
table is a modifier that is added to other tables, you should initially fill it with zeros; if it
is a modifier that multiplies other tables, you should fill it with 1s.

 Initialize Tables and Normalizers

4-37



Optimize Normalizer Breakpoints

In this section...
“Overview of Calibrating Normalizers” on page 4-38
“Optimizing Breakpoints” on page 4-39
“Example of Breakpoint Optimization” on page 4-41
“Viewing the Normalizer Comparison Pane” on page 4-43

Overview of Calibrating Normalizers

Note If you want to optimize the breakpoints for the normalizers, you should do this
before optimizing table values using the Feature Fill Wizard.

Select a normalizer in the tree display. This displays the Normalizer view, where you
can calibrate the normalizers.

This section describes how you can use CAGE to space the breakpoints over the range of
the normalizers.

1. Initialize 2. Fill 3. Optimize

To space the breakpoints, either click the buttons on the toolbar or select from the
following options on the Normalizer menu:

• Initialize

This spaces the breakpoints evenly along the normalizer. For more information, see
“Initializing Breakpoints” on page 4-36.

• Fill

This spaces the breakpoints by reference to the model. For example, you can place
more breakpoints where the model curvature is greatest. For more information, see
“Optimizing Breakpoints” on page 4-39.

4 Feature Calibrations

4-38



• Optimize

This moves the breakpoints to minimize the least square error over the range of the
axis. To optimize normalizers, each normalizer must have a single variable input that
is an input to the model (and must be different from the input to the other normalizer
for 2D tables).

For more information, see “How CAGE Optimizes Normalizer Breakpoints” on page 4-
5.

Note Fill and Optimize are only available when you are calibrating with reference to a
model, when you are performing Feature calibrations.

For more information about the Normalizer view controls, see “Table Normalizers” on
page 3-39.

Optimizing Breakpoints

Optimizing breakpoints spaces the breakpoints by reference to the model. For example,
one method places the majority of the breakpoints where the curvature of the model is
greatest. This option is only available when you are performing Feature calibrations. To
learn more, see “How CAGE Optimizes Normalizer Breakpoints” on page 4-5.

For example, a model of the spark angle that produces the maximum brake torque (MBT)
has the following inputs: engine speed N, relative air charge L, and air/fuel ratio A. You
can space the breakpoints for engine speed and relative air charge over the range of
these variables by referring to the model.

To space the breakpoints based on model curvature, perform the following steps:

1 Click  or select Normalizer > Fill.

The Breakpoint Fill Options dialog box opens.

 Optimize Normalizer Breakpoints

4-39



2 Choose the appropriate method to space your breakpoints, from the drop-down menu
in the dialog box.

The preceding example shows ShareAveCurv. For more information about the
methods for spacing the breakpoints, see “Filling Methods” on page 4-6.

3 Enter the ranges of the values for the normalizers.

The preceding example shows Range N 500 6500, and Range L, 0.1 1.
4 Enter the ranges of the other model variables.

CAGE spaces the breakpoints by reference to the model. It does this at selected
points of the other model variables. The example shows 11 17 for the Range of A
and 2 for the Number of points. This takes two slices through the model at A = 11
and A = 17. Each slice is a surface in N and L. That is, MBT(N, L, 11) and MBT(N, L,
17).

CAGE computes the average value of these two surfaces to give an average model
MBTAV(N, L).

If you set Number of points to one, and specify a range, then the mean of the range
is chosen as the evaluation point.

5 Click OK.

Note If any of the breakpoints is locked, each group of unlocked breakpoints is
independently spaced according to the selected algorithm.

4 Feature Calibrations

4-40



If you increase the number of slices through the model, you increase the computing time
required to calculate where to place the breakpoints.

After optimizing breakpoints, you can optimize table values. See “Optimize Table Values”
on page 4-24.

Example of Breakpoint Optimization

For an example of breakpoint optimization, say you have a model of the spark angle that
produces the MBT (maximum brake torque). The model has the following inputs: engine
speed, N, relative air charge, L, and air/fuel ratio, A. You can optimize the breakpoints
for N and L over the ranges of these variables.

To optimize the breakpoints, perform the following steps:

1 Ensure that the optimization routine works over reasonable values for the table by
choosing one of these methods:

a Select Normalizer > Initialize.
b Select Normalizer > Fill.

2 Click  on the toolbar or select Normalizer > Optimize.

This opens the following dialog box.

 Optimize Normalizer Breakpoints

4-41



3 Enter the ranges for the normalizers.

The example shows 0.2 0.811 for the Range of L, and 750 6500 for N.
4 Enter the appropriate number of grid points for the optimization.

This defines a grid over which the optimization works. In the preceding example, the
number of grid points is 36 for both L and N. This mesh is combined using cubic
splines to approximate the model.

5 Enter ranges and numbers of points for the other model variables.

The example shows a Range of A of 14.3 and the Number of points is 1.
6 Decide whether or not to reorder deleted breakpoints, by clicking the radio button.

4 Feature Calibrations

4-42



If you choose to reorder deleted breakpoints, the optimization process might
redistribute them between other nondeleted breakpoints (if they are more useful in a
different position).

For information about deleting breakpoints, see “Editing Breakpoints” on page 3-42.
7 Click OK.

CAGE calculates the table filled with the mesh at the current breakpoints. Then CAGE
calculates the total square error between the table values and the mesh model.

The breakpoints are adjusted until this error is minimized, using nonlinear least squares
optimization (See the reference page for lsqnonlin).

When optimizing the breakpoints, it is worth noting the following:

• The default range for the normalizer variable is the range of the variable.
• The default value for all other model variables is the set point of the variable.
• The default number of grid points is three times the number of breakpoints.

Viewing the Normalizer Comparison Pane

To view or hide the comparison pane, click , the “snapper point” at the bottom of
the normalizer display panes.

 Optimize Normalizer Breakpoints

4-43



The comparison pane displays a comparison between the following:

• A full factorial grid filled using these breakpoints
• The model

Note This is not a comparison between the current table values and the model. To
compare the current table values and the model, see “Compare the Strategy and the
Model” on page 4-46.

To make full use of the comparison pane,

1 Adjust the ranges of the variables that are common to the model and table.
2 Adjust the values selected for any variables in the model that are not in the selected

table.

The default for this is the set point of the variable, as specified in the variable
dictionary. For more information, see “Using Set Points in the Variable Dictionary”
on page 2-11.

3 Check the number of points at which the display is calculated.
4 Check the comparison between the table and the model.

Right-click the comparison graph to view the error display on page 4-44.
5 Check some of the error statistics for the comparison, and use the comparison to

locate where improvements can be made.

Error Display

The comparison pane can also be used to display the error between the model and the
'generated table' (grid filled using these breakpoints).

4 Feature Calibrations

4-44



To display the error, select one of the Error items from the Plot type drop-down list.

This changes the graph to display the error between the model and the table values at
these breakpoints.

You can display the error data in one of the following ways:

• Error (Table—Model). This is the difference between the feature and the model.
• Squared Error. This is the error squared.
• Absolute Error. This is the absolute value of the error.
• Relative Error. This is the error as a percentage of the value of the table.
• Absolute Relative Error (%). This is the absolute value of the relative error.

See Also

• “Compare the Strategy and the Model” on page 4-46

This describes the comparison made when a table node is selected in the tree display.

 Optimize Normalizer Breakpoints

4-45



Compare the Strategy and the Model
In this section...
“Display the Strategy and the Model” on page 4-46
“Display the Error Between the Strategy and the Model” on page 4-48

Display the Strategy and the Model

Note The Feature/Model Comparison is only useful for simple filling strategies. For
this reason the pane is collapsed by default. To view the comparison pane, click ,
the “snapper point” at the bottom of the table display panes.

When you calibrate a strategy, or collection of tables, by reference to a model, it is useful
to compare the strategy and the model. When viewing your feature tables, use the lower
comparison pane to graphically investigate your strategy compared with the model, as
shown in the following example. To view or hide the comparison pane, select View >
Feature/Model Comparison.

Note In a table view you see a comparison between the current strategy values and the
model, unlike the comparison pane from the normalizer node, which compares the model
and a full factorial grid filled using the breakpoints. See “Viewing the Normalizer
Comparison Pane” on page 4-43.

4 Feature Calibrations

4-46



The ranges of the common variables Number of points in the comparison display

Variables in the model,
not in the table

Error between the
strategy and the model

Comparison of the strategy
and the model

To make full use of the comparison-of-results pane,

1 Check the ranges of the variables that are common to the model and table. For each
variable check the number of points at which the display is calculated. Double-click
to edit any variable range or number of points.

2 Check the values selected for any variables in the model that are not in the selected
table. The default for this is the set point of the variable's range. Double-click to edit.

3 Check the comparison between the table and the model. You can rotate this
comparison by clicking and dragging, so that you can view all parts of the
comparison easily.

4 Use the Plot Type drop-down menu to display the error statistics for the
comparison.

 Compare the Strategy and the Model

4-47



Note Use the comparison pane for a quick visual check of your strategy results compared
to the model. For more flexibility to view your feature, select Tools > Surface Viewer.
See “Viewing a Model or Strategy” on page 10-3.

The comparison pane does not change as you change table, because it displays a
comparison between the whole feature and the model, not individual tables. Note if you
use links the comparison pane is not showing a true comparison. For example, in the
MBT Spark Estimator Problem in the Gasoline Engine Calibration case study, the cam
inputs are not constant, but the comparison pane shows the comparison using constant
values for the cam timings.

Display the Error Between the Strategy and the Model

The comparison-of-results pane can also be used to display the error between the model
and the strategy.

To display the error, select one of the Error options from the Plot Type drop-down
menu. This changes the graph to display the error between the model and the strategy.

You can display the error data in one of the following ways:

• Error (Feature-Model). This is the difference between the feature and the model.
• Squared Error. This is the error squared.
• Absolute Error. This is the absolute value of the error.
• Relative Error (%). This is the error as a percentage of the value of the model.
• Absolute Relative Error (%). This is the absolute value of the relative error.

4 Feature Calibrations

4-48



When you have completed a calibration, you can export your feature. For information,
see “Exporting Calibrations” on page 3-54.

 Compare the Strategy and the Model

4-49





Tradeoff Calibrations

• “Performing a Tradeoff Calibration” on page 5-2
• “Setting Up a Tradeoff Calibration” on page 5-7
• “Filling Tables in a Tradeoff Calibration” on page 5-12
• “Setting Values of Variables” on page 5-14
• “Choosing a Table Value at a Specific Operating Point” on page 5-16
• “Controlling Table Extrapolation Regions” on page 5-23
• “Point-by-Point Model Tradeoffs” on page 5-25

5



Performing a Tradeoff Calibration

In this section...
“Procedure for Filling Tables in a Tradeoff Calibration” on page 5-2
“Automated Tradeoff” on page 5-3

Procedure for Filling Tables in a Tradeoff Calibration

A tradeoff calibration is the process of calibrating lookup tables by adjusting the control
variables to result in table values that achieve some desired aim.

For example, you might want to set the spark angle and the air/fuel ratio (AFR) to
achieve the following objectives:

• Maximize torque
• Restrict CO emissions

The data in the tradeoff is presented in such a way as to aid the calibrator in making the
correct choices. For example, sometimes the model is such that only a slight reduction in
torque results in a dramatic reduction in CO emissions.

The basic procedure for performing tradeoff calibrations is as follows:

1 Set up the variables and constants. (See “Setting Up Variable Items” on page 2-8.)
2 Set up the model or models. (See “Setting Up Models” on page 2-16.)
3 Set up the tradeoff calibration. (See “Setting Up a Tradeoff Calibration” on page 5-

7.)
4 Calibrate the tables. (See “Filling Tables in a Tradeoff Calibration” on page 5-12.)
5 Export the normalizers, tables, and tradeoffs. (See “Exporting Calibrations” on page

3-54.)

You can also use regions to enhance your calibration. (See “Controlling Table
Extrapolation Regions” on page 5-23.)

5 Tradeoff Calibrations

5-2



See also

• “Tradeoff Calibration” for an example.

This is a tutorial giving an example of how to set up and complete a simple tradeoff
calibration.

• “Automated Tradeoff” on page 5-3 is a guide to using the optimization functionality
in CAGE for tradeoffs.

The normalizers, tables, and tradeoff form a hierarchy of nodes, each with its own view
and toolbar.

Automated Tradeoff
• “Using Automated Tradeoff” on page 5-3
• “What Are Appropriate Optimizations for Automated Tradeoff?” on page 5-5

Using Automated Tradeoff

The easiest way to automate trading off competing objectives is to use CAGE’s
optimization features and then use the results to update tradeoff tables using the Fill
Tables From Optimization Results wizard. To learn more, see “Filling Tables from
Optimization Results” on page 7-9.

You can also use a limited subset of optimization features directly in your tradeoff view,
to run an optimization routine and fill your tradeoff tables. Once you have set up an
optimization and a tradeoff, you can run an automated tradeoff. As with any other
tradeoff you need at least one table. You can apply an optimization to a cell or region of a
tradeoff table, or the whole table, and the tradeoff values found are used to fill the
selected cells. If only filling selected cells you can then fill the entire table by
extrapolation.

You must first set up an optimization to use automated tradeoff.

There is an example automated tradeoff in the optimization tutorial example,
“Optimization and Automated Tradeoff”.

1 You need a CAGE session with some models and a tradeoff containing some tables.

• See “Performing a Tradeoff Calibration” on page 5-2 for instructions on setting up
a tradeoff. You could use the tradeoff tutorial to generate a suitable example
session (see the example “Tradeoff Calibration”).

 Performing a Tradeoff Calibration

5-3



You also need to set up an optimization before you can run an automated tradeoff.
Objectives and constraints must be set up.

• For an example work through the step-by-step tutorial to set up some
optimizations and then apply them to a tradeoff table. See “Optimization and
Automated Tradeoff”.

2 Go to the tradeoff table you want to automate. You can select some table cells to
apply the optimization to, or use the whole table, or fill only previously saved
tradeoff points. Note that if you define a large region with many cells or a whole
table it can take a long time to complete the optimization. You can select individual
cells, or click and drag to select a rectangle of cells. The selected cells do not have to
be adjacent. Try a small region (say up to six cells) to begin with. Right-click selected
cells and select Extrapolation Regions -> Add Selection or use the toolbar button
(to add selection to extrapolation regions).

3
To apply optimization: click  in the toolbar, or select Inputs -> Automated
Tradeoff.

• A dialog appears that allows an appropriate (defined below) optimization to be
selected from the current project.

Note You must set up an optimization to run before you can perform an
automated tradeoff. You do this in the Optimization view. See also “Setting Up
Optimizations” on page 6-7.

The set of cells in the region you have selected becomes the operating point set for
the optimization. The cell/region breakpoint values are used to replace the fixed
variable values in the selected optimization. Note that the existing fixed variable
values are reset to their previous state at the end of the automated tradeoff.

If previous tradeoff values have been applied to a cell, those values are used for free
variable initial values and non-table-axis fixed variables; otherwise the set points
are used.

4 The optimization is run as if you were clicking Run from the Optimization view. See
“Run Optimizations” on page 6-60.

Results are placed in the tradeoff object, that is, values for the tables involving the
free variables or values for the tables for constraint or objective models. If the
routine applied gives more than one solution, for example, an NBI optimization, then

5 Tradeoff Calibrations

5-4



a solution which tries to trade off all objectives is placed in the tradeoff tables. Every
cell in the defined region is filled.

5 The cells of the region become part of the extrapolation mask (as if apply point has
been applied); so if you want you can then click Extrapolate in the toolbar to fill the
rest of the table from your optimized automated tradeoff.

What Are Appropriate Optimizations for Automated Tradeoff?

The list of all optimizations in the project is filtered. To be eligible for selection,

• The optimization must be ready to run (toolbar button enabled).
• The variables in the axes of the tradeoff tables must not be free variables in the

optimization. For example, if one of the axes is speed, then speed cannot be a free
variable.

• The fixed variables must be a subset of the variables in the axes of the tradeoff tables.
For example, if the optimization requires variables Speed and Load, then these must
be the axes variables in the tradeoff table.

• The optimization must either have N runs with all variables of length 1, or a single
run with all variables of length N.

Multimodel Tradeoff

For a multimodel tradeoff, things work slightly differently. The multimodel is only
defined for certain cells in the tradeoff tables. These are the operating points that were
modeled using the Model Browser part of the toolbox. Such cells are marked with a
model icon as shown in the example, and you should select these for running the
automated tradeoff. You can select any region, but the optimization can only find values
for the operating points defined by the multimodel.

 Performing a Tradeoff Calibration

5-5



5 Tradeoff Calibrations

5-6



Setting Up a Tradeoff Calibration

In this section...
“Overview of Setting Up a Tradeoff” on page 5-7
“Adding a Tradeoff” on page 5-8
“Adding Tables to a Tradeoff” on page 5-8
“Displaying Models in Tradeoff” on page 5-10

Overview of Setting Up a Tradeoff

A tradeoff calibration is the process of filling lookup tables by balancing different
objectives.

Typically there are many different and conflicting objectives. For example, a calibrator
might want to maximize torque while restricting nitrogen oxides (NOX) emissions. It is
not possible to achieve maximum torque and minimum NOX together, but it is possible
to trade off a slight reduction in torque for a reduction of NOX emissions. Thus, a
calibrator chooses the values of the input variables that produce this slight loss in torque
instead of the values that produce the maximum value of torque.

A tradeoff also refers to the object that contains the models and tables. Thus, a simple
tradeoff can involve balancing the torque output while restricting NOX emissions.

After you set up your variable items and models, you can follow the procedure below to
set up your tradeoff calibration:

1 Add a tradeoff. This is described in the next section, “Adding a Tradeoff” on page 5-
8.

2 Add tables to the tradeoff. This is described in “Adding Tables to a Tradeoff” on page
5-8.

3 Display the models. This is described in “Displaying Models in Tradeoff” on page 5-
10.

This section describes steps 1, 2, and 3 in turn.

When you finish these steps, you are ready to calibrate the tables.

 Setting Up a Tradeoff Calibration

5-7



Adding a Tradeoff

To add a tradeoff to your session, select File > New > Tradeoff. This automatically
switches you to the Tradeoff view and adds an empty tradeoff to your session.

An incomplete tradeoff is a tradeoff that does not contain any tables. If a tradeoff is
incomplete, it is displayed as  in the tree display. If a tradeoff is complete, it is
displayed as  in the tree display.

After you add a tradeoff you must add tables to your tradeoff.

Adding Tables to a Tradeoff
1 Add a table by selecting Tradeoff -> Add New Table or click  in the toolbar. You

can also add existing tables from your CAGE session; see “Adding Existing Tables”
on page 5-10.

Note that you must select the top tradeoff node in the tree display to use the
Tradeoff menu. This is automatically selected if your tradeoff has no tables yet (it is
the only node). You must also add at least three variables (in the variable dictionary)
to your project before you can add a table, because CAGE needs a variable to fill the
table and two more variables to define each of the two normalizers.

A dialog box opens.

2 Enter the name for the table.

If your tradeoff already contains one or more tables, when you add additional tables
they must be the same size and have the same inputs (and therefore have the same

5 Tradeoff Calibrations

5-8



normalizers). So if your tradeoff has existing tables, you can only enter the new table
name and the initial value.

For the first table in a tradeoff, you must set the normalizer inputs and sizes:

a Edit the names for the X and Y normalizer inputs (the first two variables in the
current variable dictionary are automatically selected here).

b Enter sizes for each of the normalizers (Y input = rows, X input = columns)
3 Enter an initial value to fill the table cells, or leave this at zero.
4 Click Select to choose a filling item for a table. A dialog opens where you can select

from the models and variables in your session.

a Depending on what kind of input you want, click the radio buttons to display
models or variables or both. You can choose to also show items that are filling
another table by clearing the check box.

b Select the filling item for the table and click OK.
5 Click OK to dismiss the Table Setup dialog and create the new table.

CAGE adds a table node to the tradeoff tree. Note you can still change the input for
the table as follows. Double-click the new table in the list under Tables In

 Setting Up a Tradeoff Calibration

5-9



Tradeoff, or click to select the table (it is selected automatically if it is the only table
in the tradeoff) and then click Change Filling Item ( ) in the toolbar. This is also in
the Tradeoff menu and the right-click context menu.

The Select Filling Item dialog appears where you can select inputs to fill the table, as
described above.

6 Repeat this procedure for each new table you want to add. Each additional table in
the tradeoff must have the same normalizers as the first table, so you do not have to
select normalizer inputs and sizes repeatedly. For each new table you only have to
enter the name and initial value.

Adding Existing Tables

1 Add a table by selecting Tradeoff > Add Existing Tables or click  in the
toolbar.

A dialog appears where you can select from a list of tables in the current session.
2 Select a table and click OK. It may be helpful to first select the check box to only

show suitable tables that can be added to the tradeoff.

Displaying Models in Tradeoff

To display models when viewing tables in the tradeoff display,

1 Highlight the tradeoff node in the tree.
2 From the Available Models list, select the one you want to display.

Models that are filling a table are automatically displayed.
3 Click  Add Model to Display List in the toolbar or  in the Additional Display

Models pane to move the selected model into the Display Models pane. To quickly
add all available models to the display list, click the display button repeatedly and
each successive model will be added.

4 Repeat steps 2 and 3 to add all the models you want to the display list.

5 Tradeoff Calibrations

5-10



Removing a Model

1 In the Display Models list, select the model that you want to remove.
2 Click  in the toolbar, or  in the Display Models pane, to move the selected

model into the Available Models pane.
3 Repeat until you have cleared all the appropriate models.

Once you have displayed all the models that you want to work with, you are ready to
calibrate your tables.

 Setting Up a Tradeoff Calibration

5-11



Filling Tables in a Tradeoff Calibration
Selecting a table node in the tree display enables you to view the models that you have
displayed and calibrate that table.

To calibrate the tables,

1 Select the table that you want to calibrate.
2 Highlight one operating point from the table.
3 Set the values for other input variables.

For information, see “Setting Values of Variables” on page 5-14.
4 Determine the value of the desired operating point.

For instructions, see “Choosing a Table Value at a Specific Operating Point” on page
5-16.

5 Click  to apply this value to the lookup table.

This automatically adds the point to the extrapolation mask.
6 Repeat the steps to choose values at various operating points.
7 Extrapolate to fill the table by clicking  in the toolbar.

For information, see “Filling Tables by Extrapolation” on page 4-32.
8 You can also edit table cell values manually by typing values, or right-click to Copy

or Paste values.

After you complete all these steps you can export your calibration. For information, see
“Exporting Calibrations” on page 3-54.

Notice that the graphs colored green indicate how the highlighted table will be filled:

• If a row of graphs is highlighted, the table is being filled by the indicated model
evaluation (the value shown at the left of the row).

• If the column of graphs is green, the table is being filled by the indicated input
variable (shown in the edit box below the column).

The next sections describe the following in detail:

5 Tradeoff Calibrations

5-12



• “Setting Values of Variables” on page 5-14
• “Choosing a Table Value at a Specific Operating Point” on page 5-16

 Filling Tables in a Tradeoff Calibration

5-13



Setting Values of Variables
In this section...
“Setting Values for Individual Operating Points” on page 5-14
“Setting Values for All Operating Points” on page 5-15

Setting Values for Individual Operating Points

Typically the models that you use to perform a tradeoff calibration have many inputs.
When calibrating a table of just one input, you need to set values for the other inputs.

Model output values Value of A Value of SPK Value of E

To set values for inputs at individual operating points,

5 Tradeoff Calibrations

5-14



1 Highlight the operating point in the lookup table.
2 Use the edit boxes or drag the red bars to specify the values of the other variables.

In the preceding example, the spark table is selected (the SPK graph is colored green).
You have to specify the values of AFR (A) and EGR (E) to be used, for example:

1 Select the spark table node.
2 Click in the edit box for A and set its value to 14.3.
3 Click in the edit box for E and set its value to 0.

The default values are the set points of variables, which you can edit in the Variable
Dictionary.

Setting Values for All Operating Points

For example, if you are using a tradeoff to calibrate a table for spark angle, you might
want to set the initial values for tables of air/fuel ratio (AFR) and exhaust gas recycling
(EGR).

To set constant values for all the operating points of one table,

1 Highlight the table in the tree display.
2 Select one operating point in the table.
3 Enter the desired value of the cell.
4 Right-click and select Extrapolation Mask > Add Selection.

This adds the cell to the extrapolation mask.
5 Click  to extrapolate over the entire table.

This fills the table with the value of the one cell.

 Setting Values of Variables

5-15



Choosing a Table Value at a Specific Operating Point
Value of the
TQ_Model

Value of the
NOXFLOW_Model

Edit box displaying
the value of SPK

Behavior of
TQ_Model

99%
confidence
limits for
TQ_Model

Value of
spark

Performing a tradeoff calibration necessarily involves the comparison of two or more
models. For example, in this case, the tradeoff allows a calibrator to check that a value of
spark that gives peak torque also gives an acceptable value for the NOX flow model.

1 To select a value of an input, do one of the following:

• Drag the red line.
• Right-click a graph and select Find the minimum, maximum, or turning point of

the model as appropriate (also in the toolbar and Inputs menu).
• Click the edit box under the graph as shown above and enter the required value.

2 Once you are satisfied with the value of your variable at this operating point, you
apply this value to the table by doing one of the following:

5 Tradeoff Calibrations

5-16



• Press Ctrl+T.
• Click  (Apply Table Filling Values) in the toolbar.
• Select Tables > Apply > Fill to Table.

Find Maximum, Minimum, or Turning Point of Graphs

Right-clicking a graph enables you to

 Choosing a Table Value at a Specific Operating Point

5-17



• Find minimum of model output with respect to the input variable
• Find maximum of model output with respect to the input variable
• Find turning point of model with respect to the input variable

These first three options are also in the Inputs menu.
• Reset graph zooms (also in the View menu)

There are also toolbar buttons to find the minimum, maximum and turning point of the
selected model graph.

Using Zoom Controls on the Graphs
To zoom in on a particular region, shift-click or click with both mouse buttons
simultaneously and drag to define the region as a rectangle.

To set the axes limits to the constraint boundary, select View > Zoom Inside
Constraints. This zooms the tradeoff plots inside the constraint boundaries, so you can
explore competing objectives in valid regions only. This option reduces the y axis scale as
the plots do not include regions where the model is extrapolating.

To zoom out to the original graph, double-click the selected graph, or use the right-click
Reset Graph Zooms option (also in the View menu).

Note Zooming on one graph adjusts other graphs to the same scale.

Configuring Views
Selecting the View menu offers you the following options:

• Table History

This opens the History display. For information, see “Using the History Display” on
page 3-23.

• Configure Hidden Items

This opens a dialog box that allows you to show or hide models and input variables.
Select or clear the check boxes to display or hide items. This is particularly useful if
you are trading off a large number of models or models that have a large number of
factors.

5 Tradeoff Calibrations

5-18



• Display Confidence Intervals

When you select this, the graphs display the 99% confidence limits for the models.
• Display Common Y Limits

Select this to toggle a common y-axis on and off for all the graphs. You can also press
CTRL+Y as a shortcut to turn common Y limits on and off.

• Display Constraints

Select this to toggle constraint displays on and off. Regions outside constraints are
shown in yellow on the graphs, as elsewhere in the toolbox.

• Graph Size

Select from the following options for number and size of graphs:

• Display All Graphs
• Small
• Medium
• Large

• Large Graph Headers

Select this to toggle graph header size. The smaller size can be useful when you need
to display many models at once.

• Reset Graph Zooms

Use this to reset if you have zoomed in on areas of interest on the graphs. Zoom in by
shift-clicking (or clicking both buttons) and dragging. You can also reset the zooms by
double-clicking, or by using the right-click context menu on the graphs.

• Display Table Legend

Select this to toggle the table legend display on and off. You might want more display
space for table cells once you know what the legend means. The table legend tells you
how to interpret the table display:

• Cells with a tick contain saved values that you have applied from the tradeoff
graphs (using the 'Apply table filling values' toolbar or menu option).

• Yellow cells are in the extrapolation mask.
• Blue cells are in a region mask.

 Choosing a Table Value at a Specific Operating Point

5-19



• Yellow and blue cells with rounded corners are both in a region and the
extrapolation mask.

• Cells with a padlock icon are locked.

Controlling Table Values, Extrapolation, and Locks
• Apply Fill to Table

Select this option to apply the values from the tradeoff graphs to the selected table
cell. This option is also in the toolbar, and you can use the keyboard shortcut CTRL
+T.

Note that the corresponding cell in all tables is filled with the appropriate input, not
just the cell in the currently displayed table. For example if you have graphs for spark
and EGR inputs, selecting Apply Fill to Table fills the spark table cell with the
spark value in the graphs, and the EGR table cell with the EGR value.

• Extrapolation Mask — Also available in the toolbar and the context menu (by right-
clicking a table cell). Use these options to add and remove cells from the mask for
filling tables by extrapolation. Note that cells filled by applying values from the
tradeoff graphs (using the Apply Fill To Table toolbar and menu option) are
automatically added to the extrapolation mask.

• Add Selection
• Remove Selection
• Clear Mask

• Extrapolation Regions — Also available in the toolbar and the context menu (by
right-clicking a table cell). Use these options to add and remove cells from regions. A
region is an area that defines locally where to extrapolate before globally
extrapolating over the entire table. Use regions to define high-priority areas for use
when filling tables by extrapolation. See “Controlling Table Extrapolation Regions” on
page 5-23.

• Add Selection
• Remove Selection
• Clear Regions

• Extrapolate — This option (also in the toolbar) fills the table by extrapolation using
regions (to define locally where to extrapolate before globally extrapolating) and the
cells defined in the extrapolation mask.

5 Tradeoff Calibrations

5-20



• Extrapolate (Ignore Regions) — This option fills the table by extrapolation only
using cells in the extrapolation mask.

• Table Cell Locks — Also available in the context menu by right-clicking a table cell.
Use these options to lock or unlock cells; locked cells are not changed by
extrapolating.

• Lock Selection
• Unlock Selection
• Lock Entire Table
• Clear All Locks

Tradeoff Table Menus

Working With Inputs and Tools

• Reset to Last Saved Values — This option resets all the graph input values to the
last saved value. Also in the toolbar.

• Set to Table Value — This option sets the appropriate input value on the graphs to
the value in the table.

The following three options are only enabled if a graph is selected (click to select, and a
blue frame appears around the selected graph). They are also available in the right-click
context menu on the graphs.

• Find Minimum of model vs input factor
• Find Maximum of model vs input factor
• Find Turning Point of model vs input factor

where model and input factor are the model and input factor displayed in the
currently selected graph, for example, TQ_model vs Spark.

• Automated Tradeoff — Use this option once you have set up an optimization, to
apply that optimization to the selected region of your tradeoff table. See “Automated
Tradeoff” on page 5-3 for information.

Use the Tools menu to open these windows:

• Calibration Manager — opens the Calibration Manager. See “Calibration Manager”
on page 3-27.

 Choosing a Table Value at a Specific Operating Point

5-21



• Surface Viewer — Opens the Surface Viewer. See “Surface Viewer”.

5 Tradeoff Calibrations

5-22



Controlling Table Extrapolation Regions

In this section...
“What Are Regions?” on page 5-23
“Defining a Region” on page 5-24
“Clearing a Region” on page 5-24

What Are Regions?

A region is an area that defines locally where to extrapolate before globally extrapolating
over the entire table.

For example, consider filling a large table that has twenty breakpoints for each
normalizer by extrapolation. Two problems arise:

• To have meaningful results, you need to set values at a large number of operating
points.

• To set values at a large number of operating points takes a long time.

To overcome this problem, you can

1 Define regions within the lookup table.
2 In each region, set the values of some operating points.
3 Click  to fill the table by extrapolation.

Each region is filled by extrapolation in turn. Then the rest of the table is filled by
extrapolation. The advantage of using regions is that you can have more meaningful
results by setting values for a smaller number of operating points.

Cells are colored

• Blue with rounded corners if they form part of the extrapolation mask
• Purple background if they are part of a region
• Both if they are part of the extrapolation mask and part of a region.

 Controlling Table Extrapolation Regions

5-23



Defining a Region
1 Click and drag to highlight the rectangle of cells in your tradeoff table.
2 To define the region, click  in the toolbar, or right-click and select Extrapolation

Regions > Add Selection, or select the menu option Tables > Extrapolation
Regions > Add Selection.

The cells in the region are colored with purple backgrounds.

Clearing a Region
1 Highlight the rectangle of cells in your table.
2 To clear the region, click  in the toolbar, or right-click and select Extrapolation

Regions > Remove Selection, or select the menu option Tables > Extrapolation
Regions > Remove Selection.

You can clear all regions at once by selecting Clear Regions from the
Extrapolation Regions submenu.

5 Tradeoff Calibrations

5-24



Point-by-Point Model Tradeoffs
In this section...
“What Is A Point-by-Point Model Tradeoff?” on page 5-25
“Adding a Point-by-Point Model Tradeoff” on page 5-26
“Calibrating Using a Point-by-Point Model Tradeoff” on page 5-28

What Is A Point-by-Point Model Tradeoff?

There are two types of tradeoff that you can add to your session, a tradeoff of
independent models, as described earlier (see “Performing a Tradeoff Calibration” on
page 5-2), or a tradeoff of interconnected models: a point-by-point model (or multimodel)
tradeoff.

A point-by-point model tradeoff is a specially built collection of models from the Model
Browser.

You can build a series of models so that each operating point has a model associated with
it. In the Model Browser, you can export models for a point-by-point model tradeoff from
the test plan node. The models must be two-stage and must have exactly two global
inputs. You can use the point-by-point test plan template to create these models. For
more information see “Fit a Point-by-Point Model”.

The procedure for calibrating by using a point-by-point model tradeoff follows:

1 Import your model and create tables from your point-by-point model. (See “Creating
Tables from a Model” on page 3-4.)

2 Calibrate the tables. (See “Calibrating Using a Point-by-Point Model Tradeoff” on
page 5-28.)

3 Export your calibration. (See “Importing and Exporting Calibrations” on page 3-52.)

The point-by-point model is only defined for certain cells in the tradeoff tables. These are
the operating points that were modeled using the Model Browser part of the toolbox.
These cells have model icons in the table. At each of these operating points, you can use
the model to trade off, and by doing this you can adjust the value in the table. The point-
by-point model is not defined for all other cells in the table and so you cannot use models
to tradeoff. You can edit these cells and they can be filled by extrapolation. You trade off
values at each of the model operating points in exactly the same way as when using

 Point-by-Point Model Tradeoffs

5-25



independent models, as described in “Choosing a Table Value at a Specific Operating
Point” on page 5-16. When you have determined table values at each of the model

operating points, you can fill the whole table by extrapolation by clicking . See “Filling
Tables by Extrapolation” on page 4-32.

Adding a Point-by-Point Model Tradeoff

The simplest way to create your point-by-point tradeoff is to:

1 Import your model into CAGE. See “Import Models and Calibration Items Using
CAGE Import Tool” on page 2-5).

2 Create tables from your point-by-point model. See “Creating Tables from a Model” on
page 3-4.

You can also:

• Create the tradeoff by exporting from the Model Browser test plan. See “Export Point-
by-Point Models to CAGE”.

• In CAGE, create a new tradeoff and then import the point-by-point models from a file.

To create a new tradeoff from scratch:

1 Select File > New > Tradeoff. CAGE switches to the tradeoff view and creates a
new empty tradeoff.

2 Select File > Import > Point-by-Point Model Tradeoff File.

The file must have been exported from the Model Browser, from the test plan. See
“Export Point-by-Point Models to CAGE”.

3 Select the correct file to import and click Open. This opens a dialog box.

5 Tradeoff Calibrations

5-26



4 In the left Model sites list, you can clear the check boxes for any models at
operating points that you do not want to import.

Notice that the operating points are displayed graphically at the top. If an operating
point is deselected, it is displayed as gray here, rather than blue.

 Point-by-Point Model Tradeoffs

5-27



CAGE will create tables for all the models and input variables, with breakpoints at
all the model operating points. You can choose not to create all the tables; click
Select Tables to choose from the list which tables you want.

5 Choose the normalizers (axes) of the tables by using the X- and Y-axis input
drop-down menus.

6 You can adjust the number of breakpoints in the following ways:

• Leave the Automatic breakpoint settings radio button selected and edit the
relative tolerances around the model sites. Use the tolerance edit boxes in the
model setup pane. You can observe the effects of altering the tolerances on the
number of breakpoint dotted lines drawn on the top graphic. Initially each model
site has a breakpoint. If operating points are close together, you can increase the
tolerances to decrease the number of breakpoints.

For example, if several close points may all have been intended to run at exactly
the same point, you might want to adjust the tolerances until those model points
(displayed as blue dots) only have one breakpoint line. The number of rows and
columns that will be created is displayed in the edit boxes on the right.

• Alternatively you can select the Manual breakpoint settings radio button and
enter the number of rows and columns in the edit boxes, and you can directly edit
the values of the breakpoints.

7 Click OK.

When you click OK, CAGE creates all the tables for the multimodel tradeoff, with
breakpoints at the values you have selected.

Note When you calibrate the tables, you can only use models to tradeoff at the operating
points defined for the models. These cells have model icons in the table. You can edit
other cells, but they have no models to tradeoff associated with them.

You can now calibrate your tables. See the next section, “Calibrating Using a Point-by-
Point Model Tradeoff” on page 5-28.

Calibrating Using a Point-by-Point Model Tradeoff

Each editable operating point in your tables has a model icon in the cell, like this
example cell.

5 Tradeoff Calibrations

5-28



These cells have a model defined at that point. You use the display of these models to
help you trade off values at these points to fulfill your aims in exactly the same way as
when using independent models in "ordinary" tradeoff mode, as described in “Choosing a
Table Value at a Specific Operating Point” on page 5-16.

1 Change input values by dragging the red lines on the graphs or by typing directly
into the edit boxes above the graphs. Use the context menu, toolbar or Inputs menu
to find the maximum, minimum, or turning point of a model if appropriate.

2 Look at the model evaluation values (to the left of each row of graphs) and the input
variable values (in the edit boxes below the graphs) to see if they meet your
requirements.

Remember that the green highlighted graphs indicate how the selected table is filled:
if a row is green, the model evaluation value (to the left) fills the table at that
operating point; if a column is green, the input variable value (in the edit box below)
fills the table.

See the example following; the SPK column of graphs is green, so the value of SPK in
the edit box is entered in the table when you click the Apply Table Filling Values
button ( ).

 Point-by-Point Model Tradeoffs

5-29



Value of the TQ model

Value of the TQ model This column is green, so
this value of SPK is entered
in the table when you select
Apply Fill to Table.

Value of spark

3 When you are satisfied with the tradeoff given by the value of your variable at this
operating point, you apply this value to the table by pressing Ctrl+T, selecting
Tables -> Apply Fill to Table, or clicking  in the toolbar.

4 When you have determined table values at each of the model operating points, you

can fill the whole table by extrapolation by clicking   . See “Filling Tables by
Extrapolation” on page 4-32.

You can then export your calibration; see “Importing and Exporting Calibrations” on
page 3-52.

5 Tradeoff Calibrations

5-30



Optimization Setup

This section includes the following topics:

• “Using Optimization in CAGE” on page 6-2
• “Create an Optimization” on page 6-7
• “Set Up Sum Optimizations” on page 6-21
• “Set Up Multiobjective Optimizations” on page 6-32
• “Set Up Modal Optimizations” on page 6-37
• “Set Up MultiStart Optimizations” on page 6-41
• “Edit Variable Values” on page 6-44
• “Edit Objectives and Constraints” on page 6-52
• “Run Optimizations” on page 6-60
• “Edit Optimization Parameters” on page 6-62

6



Using Optimization in CAGE

In this section...
“Overview of Optimization in CAGE” on page 6-2
“Parallel Computing in Optimization” on page 6-3
“Optimization Problems You Can Solve with CAGE” on page 6-3

Overview of Optimization in CAGE

You can use CAGE to solve many automotive optimization problems. For examples of
problems you can solve with CAGE, see “Optimization Problems You Can Solve with
CAGE” on page 6-3.

To reach the Optimization view, click the Optimization button in the left Processes
pane.

In the Optimization view you can set up and view optimizations. The view is blank until
you create an optimization. When you have optimizations in your project, the left pane
shows a tree hierarchy of your optimizations, and the right panes display details of the
optimization selected in the tree.

For any optimization, you need one or more models. You can run an optimization at a
single point, or you can supply a set of points to optimize. The steps required are

6 Optimization Setup

6-2



1 Import a model or models.
2 Set up an optimization.

Optimization functionality in CAGE is described in the following sections:

• The steps for setting up and running optimizations are described in these sections:

• “Create an Optimization” on page 6-7
• “Run Optimizations” on page 6-60

• “Optimization Analysis” describes using the optimization output views to analyze
your results, fill tables and export results.

• After you set up an optimization, you can apply it to a region in a set of tradeoff
tables. See “Automated Tradeoff” on page 5-3“Automated Tradeoff” on page 5-3.

• You can define your own optimization functions for use in CAGE. See “Optimization
Scripting”.

Parallel Computing in Optimization

The toolbox automatically runs optimizations in parallel if you have Parallel Computing
Toolbox™ available. The optimization runs are then executed in parallel. This option can
significantly reduce the computation time for larger problems where each run is taking a
lot longer than the time it takes to send the problem to another computer.

When you run the optimization, CAGE calls parpool to open the parallel pool if
necessary, then the optimization runs are executed in parallel. CAGE displays progress
messages until the optimization is completed.

For more information, see “Getting Started with Parallel Computing Toolbox” (Parallel
Computing Toolbox).

Building models in the Model Browser might also open parpool for you. See “Build
Models in Parallel”.

Optimization Problems You Can Solve with CAGE

• “Point Optimization Problems” on page 6-4
• “Sum Optimization Problems” on page 6-5

 Using Optimization in CAGE

6-3



Point Optimization Problems

CAGE provides a flexible optimization environment in which many automotive
optimization problems can be solved. These problems can be divided into two main
groups, point and sum problems. This section describes point problems.

In a point problem, a single optimization run can determine optimal control parameter
values at a single operating point. To optimize control parameters over a set of operating
points, an optimization can be run for each point.

Examples of point problems that CAGE can be used to solve are described below:

• Find the optimal spark timing (SPK), intake valve timing (INTCAM) and exhaust
valve timing (EXHCAM) at each point of a lookup table whose axes are engine speed
(N) and relative load (L).

Optimized values of the control parameters are determined by running the following
optimization at each point of the lookup table:

Objective: Maximize engine torque, TQ = TQ(N, L, SPK, EXHCAM, INTCAM)

Constraints:

• Residual fraction <= 17% at each (N, L) operating point
• Exhaust temperature <= 1290°C at each (N, L) operating point
• Engine to be operated inside the operating envelope of the engine

• Find the optimal mass of fuel injected (F), rail pressure (P), pilot timing (PT) and
main timing (MT) at each point of a lookup table whose axes are engine speed (N) and
engine torque (TQ).

Optimized values of the control parameters are determined by running the following
optimization at each point of the lookup table:

Objective: Minimize brake specific fuel consumption, BSFC = BSFC(N, TQ)

Constraints:

• Engine out NOx <= 0.001 kg/s at each (N, TQ) operating point
• Engine out Soot emissions <= 0.0001 kg/s at each (N, TQ) operating point

• Find the optimum spark timing (SPK) and exhaust gas recirculation (EGR) at each
point of a set of operating points defined by engine speed (N), engine load (L) pairs.

6 Optimization Setup

6-4



Optimized values of SPK and EGR are determined by running the following
optimization at each point:

Objective: Maximize engine torque, TQ = TQ(N, L, SPK, EGR)

Constraints: Engine out NOx <= 400 g/hr at each (N, L) operating point
• For a new engine, find out the optimal torque versus NOx emissions curve for this

engine over the operating range of the engine. This is a multi-objective optimization,
and CAGE Optimization contains an algorithm (NBI) to solve these problems.

For this example, the optimal torque-NOx curve is determined by solving the
following optimization problem for optimal settings of spark timing (SPK) and
exhaust gas recirculation (EGR):

Objectives:

• Maximize engine torque, TQ = TQ(N, L, SPK, EGR)
• Minimize engine out NOx = NOx(N, L, SPK, EGR)

To find out more about solving multiobjective optimization problems in CAGE, see
“Set Up Multiobjective Optimizations” on page 6-32.

• For engines with multiple operating modes, find the best operating mode for each
operating point. See “Set Up Modal Optimizations” on page 6-37.

To find out more about solving point optimization types of problems in CAGE, see
“Create an Optimization” on page 6-7.

Sum Optimization Problems

In a sum optimization, a single optimization run can determine the optimal value of
control parameters at several operating points simultaneously. All the control
parameters for the operating points are optimized by calling the algorithm once (there's
only one call to foptcon per run for a sum optimization). This approach contrasts with a
point optimization, which has to make a call to the algorithm for every point to find the
optimal settings of the control parameters.

• Find the optimal spark timing (SPK), intake valve timing (INTCAM) and exhaust
valve timing (EXHCAM) at each point of a look-up table whose axes are engine speed
(N) and relative load (L).

Optimized values of the control parameters are determined by running the following
optimization once:

 Using Optimization in CAGE

6-5



Objective: Maximize weighted sum of engine torque, TQ = TQ(N, L, SPK, EXHCAM,
INTCAM) over the (N, L) points of a look-up table.

Constraints:

• Difference in INTCAM between adjacent cells is no greater than 5°.
• Difference in EXHCAM between adjacent cells is no greater than 10°.
• At each table cell, residual fraction <= 17%
• At each table cell, exhaust temperature <= 1290°C

• Find the optimal start of injection (SOI), basefuelmass (BFM), fuel pressure (P), turbo
position (TP) and lift of the EGR valve (EGR) at a set of mode points defined by
engine speed (N), engine torque (TQ) pairs.

Optimized values of the control parameters are determined by running the following
optimization once:

Objective: Maximize weighted sum of brake specific fuel consumption, BSFC =
BSFC(SOI, BFM, P, TP, EGR, N, TQ) over the (N, TQ) mode points.

Constraints:

• Weighted sum of brake specific NOx must be less than a legislated maximum
• At each mode point, air fuel ratio must be greater than a specified minimum
• At each mode point, turbo speed must not exceed a specified maximum

To find out more about solving these types of problems in CAGE, see “Set Up Sum
Optimizations” on page 6-21.

6 Optimization Setup

6-6



Create an Optimization

In this section...
“Setting Up Optimizations” on page 6-7
“Creating Optimizations from Models” on page 6-8
“Tools for Common Optimization Tasks” on page 6-11
“Optimization Wizard” on page 6-12

Setting Up Optimizations

For any optimization, you need one or more models. Import the model or models you
want to optimize into your project. See “Import Models and Calibration Items Using
CAGE Import Tool” on page 2-5. After you import your models, you can create an
optimization.

Use the following process to set up an optimization:

1 Use the wizard for “Creating Optimizations from Models” on page 6-8 to create
your optimization.

You can use the wizard to set up any type of optimization: point or sum, single or
multiobjective, modal, or multistart optimizations. See “About Point and Sum
Optimizations” on page 6-8.

2 Add constraints. You can add a boundary model constraint in the wizard. Use the
Optimization view to apply other types of constraints (model constraints, linear,
ellipsoid, 1–D table, 2–D table, and range). See “Edit Constraint” on page 6-55 for
details of all these constraints.

3 Choose the points where you want to run the optimization. To do so, you can use the
wizard or the Optimization view. In the wizard you can select a suitable table grid,
data set, or point-by-point models, or use the variable set points. In the Optimization
view you can select the points manually or import them from data sets, tables, or the
output of existing optimizations. See “Edit Variable Values” on page 6-44.

4 Run the optimization. See “Run Optimizations” on page 6-60.
5 View the results. See “Optimization Analysis”.

 Create an Optimization

6-7



About Point and Sum Optimizations

You can set up either point or sum optimizations using the Create Optimization From
Model wizard.

You can start a common CAGE calibration workflow by creating a point optimization.
What is a point optimization? For a point optimization problem, CAGE can determine
optimal control parameter values at a single operating point per optimization run. A run
is a single call to the optimization algorithm. To optimize control parameters for a set of
operating points, CAGE can run an optimization for each point.

You can use a point optimization workflow to find good initial values for a sum
optimization. In a sum optimization, a single optimization run can determine the optimal
value of control parameters at several operating points simultaneously. For information
on the different steps required for setting up sum optimizations, see “Set Up Sum
Optimizations” on page 6-21.

Some optimization problems require optimizing more than one objective simultaneously
(multiobjective), or multiple solutions per point (modal or multistart). For information on
the different steps required for setting up these optimizations, see “Set Up Multiobjective
Optimizations” on page 6-32, “Set Up Modal Optimizations” on page 6-37, and “Set Up
MultiStart Optimizations” on page 6-41.

For examples of types of optimization problems, see “Optimization Problems You Can
Solve with CAGE” on page 6-3

Creating Optimizations from Models

You can use the Create Optimization from Model wizard to set up any type of
optimization: point or sum, single or multiobjective, modal, or multistart optimizations.
To set up an optimization using a model in your project, from any view in CAGE, use this
procedure:

1 Select Tools > Create Optimization From Model (or use the toolbar button).

The Create Optimization From Model Wizard appears.
2 Select a model to minimize or maximize in the optimization.

If you are viewing a model, then the wizard automatically selects the current model.
If you are viewing an optimization or an optimization output node, then the wizard
automatically selects the model in the first objective.

6 Optimization Setup

6-8



If you have point-by-point models as shown in this example, you can optionally select
the check box to Create operating point data set.

Click Next.
3 Select the optimization type (algorithm, maximize or minimize, point or sum), data

source for optimization, free variables, and boundary constraint.

 Create an Optimization

6-9



• Algorithm:

• Use the default foptcon for gradient-based single-objective optimizations.
• Use NBI for multiobjective optimizations. You can set up your additional

optimization objectives after you finish the wizard. See “Set Up Multiobjective
Optimizations” on page 6-32.

• Use gamultiobj for multiobjective optimizations with more than two
objectives and those that are not smooth. Such problems can work better with
gamultiobj than with NBI. You can set up your additional optimization
objectives after you finish the wizard. This algorithm is only available if you
have the Global Optimization Toolbox product installed. See “Set Up
Multiobjective Optimizations” on page 6-32.

• Use ga or patternsearch for nongradient-based single-objective
optimizations. These algorithms are only available if you have the Global
Optimization Toolbox product installed.

6 Optimization Setup

6-10



• Use Modal optimization with a composite model for selecting the best
operating mode for each operating point. See “Set Up Modal Optimizations” on
page 6-37.

• Use MultiStart to look for multiple local optimum solutions by running
multiple start points for each operating point. See “Set Up MultiStart
Optimizations” on page 6-41.

• If you have a suitable user-defined optimization routine in CAGE, it can
appear here. See “Optimization Scripting”.

• Objective type: Choose whether you want to Maximize or Minimize your
model, and select a Point or Sum objective.

CAGE automatically configures your variable values correctly: a run per point if
you select Point, a single run for Sum. See “Set Up Sum Optimizations” on page
6-21.

• Data Source: Choose the points where you want to run the optimization. You
can also set up points in the Optimization view. If you choose to set up points in
the wizard, the options depend on the contents of your project and your model
type. You can choose to use the variable set points, a data set, a table grid, model
operating points (the default for point-by-point models), or unique operating
points (for a composite model combining point-by-point models).

• Free variables: Select the check boxes of the variables you want to optimize
from the set of model inputs. If you select a table grid as the Data source, as
shown in the preceding figure, CAGE automatically removes the table normalizer
variables from the selection of free variables.

• Add a model boundary constraint: Select the check box if you want to
constrain the optimization within the boundary model associated with your
model.

Click Finish to create the optimization.

When you return to the Optimization view you can edit or add constraints and settings
and run the optimization.

After you create the optimization, you cannot change the free variables or the algorithm
type.

Tools for Common Optimization Tasks

 Create an Optimization

6-11



Common tasks are available in the toolbar:

• Create Tables From Model — use this wizard to create tables (and optionally a
tradeoff) for use with the current optimization. A common workflow is creating tables
with the same inputs as your optimization, for filling with optimization results. The
wizard automatically selects the model in the first objective (you can also choose any
model in your project), and then you can choose which variables and responses to set
up tables for. You can then fill these tables with the results from your optimization,
and investigate your results in the tradeoff view. See “Creating Tables from a Model”
on page 3-4.

• Add Objective — Adds an objective to your optimization (if enabled; remember
foptcon can only have a single objective). You must double-click the new objective to
open the Edit Objective dialog box, select a model, and set whether to maximize or
minimize. See “Edit Objective” on page 6-53.

• Add Constraint — Adds a constraint to your optimization. You must double-click the
new constraint (in the list of constraints) to open the Constraint Editor and set up the
constraint. See “Edit Constraint” on page 6-55

• Import from a data set, import from optimization output, import from table grid,
import from table values — You can use these to populate the Variable Values panes
by importing values — See “Edit Variable Values” on page 6-44.

• Set Up Optimization, Set Up and Run Optimization — Both these options open the
Optimization Parameters dialog box, where you can change optimization settings
such as tolerances and number of solutions. When you close the dialog box the
settings are saved (and the optimization runs in the case of Set Up and Run). See
“Edit Optimization Parameters” on page 6-62.

• Run Optimization — Starts the optimization. See “Run Optimizations” on page 6-60.

Optimization Wizard

For most optimizations, you should use the wizard for “Creating Optimizations from
Models” on page 6-8 because it simplifies the setup process.

If your user-defined optimization script defines operating point sets and/or a fixed
number of free variables, you must use the Optimization Wizard instead. This is common
with Version 2.0 scripts.

For example you may have advanced operating point set requirements, so you need to
match the data set variables as part of setting up the free variables; or your optimization

6 Optimization Setup

6-12



problem may involve free variables that are not part of the objective model (e.g., some
feasibility problems).

You can use the Optimization Wizard to:

1 Choose algorithm
2 Set up free variables, objectives, and constraints options — “Optimization Wizard

Step 2” on page 6-15
3 Select free variables — “Optimization Wizard Step 3” on page 6-16

The last 3 steps you can do in the wizard or in the Optimization view:
4 Set up objectives — “Optimization Wizard Step 4” on page 6-17
5 Set up model constraints — “Optimization Wizard Step 5” on page 6-18
6 Set up data sets (user-defined optimizations only) — “Optimization Wizard Step 6”

on page 6-19

To use the Optimization Wizard, select File > New > Optimization.

This takes you to the Optimization Wizard, which leads you through the steps of
choosing the optimization to run, specifying the number of variables to optimize over
(unless this is predefined by the function), and linking the variables referenced in the
optimization to CAGE variables.

Step 1. First you must choose your algorithm. The first screen of the Optimization
Wizard is shown below.

 Create an Optimization

6-13



The first four algorithm choices in the list are standard routines you can use for
constrained single and multiobjective optimization.

• foptcon is a single-objective optimization subject to constraints. This function uses
the MATLAB fmincon algorithm from the Optimization Toolbox™ product.

• NBI and gamultiobj are multiobjective and can also be subject to constraints.
• ga, gamultiobj, and patternsearch are only available if you have the Global

Optimization Toolbox product installed.

• ga stands for Genetic Algorithm, for single-objective optimization subject to
constraints. This function uses the MATLAB ga algorithm from the Global
Optimization Toolbox product. See “Genetic Algorithm” (Global Optimization
Toolbox).

• patternsearch is another algorithm for single-objective optimization subject to
constraints, from the Global Optimization Toolbox product. See “Direct Search”
(Global Optimization Toolbox).

• Modal optimization selects the best operating mode for each operating point, and
requires a composite model. See “Set Up Modal Optimizations” on page 6-37.

In many cases these standard routines are sufficient to allow you to solve your
optimization problem. Sometimes, however, you might need to write a customized
optimization algorithm; to do this you can use the supplied template to modify for your

6 Optimization Setup

6-14



needs. Any optimization functions that you have checked into CAGE appear in this list.
See “Optimization Scripting” for information. The Worked Example option is designed to
show you how to use the modified template. For step-by-step instructions, see the
optimization tutorial section “Example User-Defined Optimization” on page 8-9.

Note If you choose a user-defined optimization function at step 1, all choices in
subsequent steps depend on the settings defined by that function. When writing user-
defined optimizations you can choose to set predetermined algorithm options or allow the
user to make selections on any subsequent screen of the Optimization Wizard.

Optimization Wizard Step 2

Here you select algorithm options for numbers of free variables, objectives, and
constraints. The optimization tries to find the best values of the free variables. The
options available depend on your selected algorithm.

• If in step 1 you select the foptcon algorithm and click Next, you get the following
choices:

The foptcon algorithm can only have a single objective, so this control is not
enabled. Choose the number of free variables and constraints you require. You can
also add constraints later.

 Create an Optimization

6-15



• If in step 1 you select the algorithm NBI, and click Next, you see this:

NBI must have a minimum of two objectives, and you can choose as many free
variables and constraints as you like. You can add constraints later if required.

Click Next to proceed to setting up free variables.

Optimization Wizard Step 3

You must select variables to link with the free variables used in your optimization.

6 Optimization Setup

6-16



Use this screen to associate the variables from your CAGE session with the free
variable(s) you want to use in the optimization. Select the correct pair in the right and
left lists by clicking, then click the large button as indicated in the figure.

Once you have assigned your free variables here you can either click Next or Finish.
This also applies to all later steps in the Optimization Wizard.

• If you click Next you proceed to further screens of the Optimization Wizard where
you can set up objectives and constraints.

• If you click Finish you return to the Optimization view in CAGE. You can set up
your objectives and constraints from the Optimization view instead of using the
Optimization Wizard. You cannot run your optimization until objectives (and
constraints if required) have been set up.

Optimization Wizard Step 4

You can set up your objectives here or you can set them up at the Optimization view in
CAGE. See “Edit Objective” on page 6-53.

 Create an Optimization

6-17



Here you can select which models from your session you want to use for the optimization,
and whether you want to maximize or minimize the model output. The foptcon
algorithm is for single objectives, so you can only maximize or minimize one model. The
NBI or gamultiobj algorithms can evaluate multiple objectives. For example, you might
want to maximize torque while minimizing NOX emissions. Remember you can also
define constraints later, for example, using emissions requirements.

You can also include 'helper' models in your user-defined optimizations, so you can view
other useful information to help you make optimization decisions (this is not enabled for
NBI or foptcon).

• Click Next to proceed to setting up constraints.
• Click Finish to complete the Optimization Wizard and return to the Optimization

view. Note you can only set up point objectives in the wizard, but you can also set up
sum objectives in the main Optimization view. See “Edit Objectives and
Constraints” on page 6-52.

Optimization Wizard Step 5

You can use models to define constraint regions that restrict free variables. If you want
to use constraints you can select them here, or add them in the Optimization view in
CAGE. You can also add other types of constraints in the Optimization view. See “Edit
Constraint” on page 6-55.

6 Optimization Setup

6-18



Select a model for each constraint by selecting a CAGE model and a model constraint and
clicking the button to match them up.

For each constraint, either:

• Enter a value in the edit box to define the bound. Select the operator to define
whether the optimization output should be constrained to be greater than or less than
the value.

• Alternatively, select the radio button to use the Boundary of model as the
constraint.

• Click Finish to complete the Optimization Wizard and return to the Optimization
view.

• You can only click Next to proceed to setting up any data sets if required by your
user-defined optimization.

Optimization Wizard Step 6

If your user-defined optimization allows you to add a data set you can select it on step 6
of the Optimization Wizard. You can use data sets to evaluate models over a different set
of operating points during an optimization run. As an example, you could run an
optimization at the points (N1, L1), (N2, L2), but an important quantity to monitor and
possibly act upon is, say, temperature at points (N3, L3), (N4, L4). You can monitor the

 Create an Optimization

6-19



temperature at these points by using data sets, to help you select optimization results.
You can set up data sets in Step 6 of the wizard or in the Optimization view in CAGE
(select Optimization > Edit Data Sets).

Data sets are not enabled for foptcon and NBI optimizations.

Click Finish to return to the Optimization view in CAGE. Your new optimization
appears as a new node in the tree pane on the left, and the setup details appear on the
right.

6 Optimization Setup

6-20



Set Up Sum Optimizations

In this section...
“Overview of Setting Up Sum Optimizations” on page 6-21
“Example Problem to Demonstrate Controls for Sum Optimizations” on page 6-23
“Using Variable Values Length Controls” on page 6-24
“Algorithm Restrictions” on page 6-27
“Using Application Point Sets” on page 6-30

Overview of Setting Up Sum Optimizations

CAGE can solve sum-type optimizations. These optimizations find the optimal settings of
control parameters at several operating points simultaneously. You can use sum
optimizations to solve drive-cycle problems where you must apply the constraints across
the whole cycle. For example, a constraint such as weighted engine out brake specific
NOx <= 3 g/kWh.

If you have an existing point optimization, you can use a utility to create a sum
optimization from your point optimization output. This approach can help you find good
initial values for a sum optimization. To create a sum optimization from your point
optimization output node, select Solution > Create Sum Optimization . For more
details see “Create Sum Optimization from Point Optimization Output” on page 7-4.

To set up a new sum optimization:

1 Use the “Creating Optimizations from Models” on page 6-8 Wizard to create your
optimization. You can configure a sum objective in the wizard. CAGE automatically
configures your variable values correctly for a sum optimization, defining a single
run. See “What Is a Run?” on page 6-22.

You can also configure a sum objective later in the Optimization view. See “Sum
Objectives” on page 6-54.

2 Add constraints:

• You can add a boundary model constraint in the wizard.
• To apply other types of constraints you must use the Optimization view. You can

apply linear, ellipsoid, 1-D table, 2-D table, and range constraints, and some

 Set Up Sum Optimizations

6-21



constraints are specific to sum optimizations—sum constraints and table gradient
constraints.

See “Edit Constraint” on page 6-55 for details of all these constraints.
3 Choose the points where you want to run the optimization:

• You can use the wizard to select a suitable table grid, data set, or point-by-point
model, or use the variable set points.

• You can also set up your optimization variable values in the Optimization view.
You can enter values manually, or by importing from data sets, tables, or the
output of existing optimizations. See “Edit Variable Values” on page 6-44.

For sum optimizations you must have a single run, defined by the length controls.
CAGE automatically configures your variable values correctly for a sum optimization
(defining a single run) when you either:

• Use the Create Sum Optimization utility
• Use the Create Optimization from Model wizard and then select a sum

objective.

If you prefer, you can use the length controls in the Optimization view instead of the
wizard. See “Using Variable Values Length Controls” on page 6-24.

4 (Optional) You can evaluate objectives or constraints over different operating points
to those you specified in the optimization. See “Using Application Point Sets” on page
6-30.

5 Run the optimization. See “Run Optimizations” on page 6-60.
6 View the results (see “Viewing Your Optimization Results” on page 7-18). For

descriptions of optimization output specific to sum problems, see “Interpreting Sum
Optimization Output” on page 7-73.

What Is a Run?

Sum type optimizations determine optimal settings of operating points simultaneously.
Thus, one call to the algorithm determines the optimal settings of the control parameters
at each operating point.

In CAGE, a run refers to each call to the optimization algorithm. . You specify the
number of runs that you want CAGE to perform with the Number of runs control in the
Input Variable Values pane. For more details, see “Using Variable Values Length
Controls” on page 6-24.

6 Optimization Setup

6-22



Example Problem to Demonstrate Controls for Sum Optimizations
The following sections describe the controls and outputs for sum optimizations using the
following example problem for illustration.

Say you have created models for torque (TQ), residual fraction (RESIDFRAC) and
exhaust temperature (EXTEMP) for a gasoline engine.

The inputs to these models are

• Spark advance, S
• Intake cam timing, INT
• Exhaust cam timing, EXH
• Engine speed, N
• Relative load, L

You need to set up an optimization to calculate optimal settings of S, INT and EXH for
the following operating points:
N L
1000 0.3
1100 0.2
1250 0.31
1500 0.25
1625 0.18
The objective for this optimization is:

Maximize the weighted sum of TQ over the operating points.

The constraints for this optimization are:

• Constraint 1: EXTEMP <= 1290°C at each operating point
• Constraint 2: RESIDFRAC <= 17% at each operating point
• Constraint 3: Change in INT is no more than 5.5° per 500 rpm change in N and 5.5°

per 0.1 change in L, evaluated over a 3-by-3 (N, L) table.
• Constraint 4: Change in EXH is no more than 5.5° per 500 rpm change in N and 5.5°

per 0.1 change in L, evaluated over a 3-by-3 (N, L) table.

You can use the foptcon algorithm in CAGE to solve this problem.

 Set Up Sum Optimizations

6-23



This example is used to explain the controls and outputs in the following sections, “Using
Variable Values Length Controls” on page 6-24 and “Interpreting Sum Optimization
Output” on page 7-73.

See “Algorithm Restrictions” on page 6-27 for details on the optimization algorithm
restrictions in CAGE.

Using Variable Values Length Controls

Note CAGE automatically configures your variable values correctly for a sum
optimization when you use the Create Optimization from Model wizard and select a
sum objective, or when you use the utility to Create Sum Optimization from point
optimization output. CAGE defines a single run with multiple values, so you do not need
to adjust the Number of Values controls.

You use the Input Variable Values pane to set variable values for the points where you
want the optimization to run. (See “Edit Variable Values” on page 6-44). You can enter
values manually or by importing from data sets, tables, or the output of existing
optimizations.

For sum optimizations you must have a single run. You specify the number of runs that
CAGE will perform with the Number of Values length controls when defining the
variable values.

At the optimization node the Input Variable Values pane has Number of Values
controls for each free and fixed variable. Use these controls to increase the number of
operating points per optimization run. If you leave all the Number of Values set to one,
each row in the values panes represents one optimization run. See “What Is a Run?” on
page 6-22.

• You can edit the Number of Values directly, or you can select Optimization > Set
Variable Lengths to change all variable lengths at once.

• You can quickly toggle between N runs of one point and a single run of N points
(which can be used as a drive cycle for sum optimization problems) using the
Optimization menu items Convert to Single Run and Convert to Multiple
Runs. You can also use the Number of Values controls to define your sum
optimization runs.

6 Optimization Setup

6-24



If you increase the Number of Values of a fixed or free variable, then the number of
operating points within each run increases, as shown in the following example.

The input variable values are configured for the example problem, showing a single run
(left column under Number of Values shows 1) of five operating points (as shown in the
right column under Number of Values). The optimizer simultaneously finds the optimal
settings of S, EXH and INT at all the operating points, starting at the initial values shown
in the Free Variables table for each point.

The index of each operating point is indicated by the number in brackets in the right
column under Number of Values, for example the third operating point is N=1250,
L=0.31.

When objectives or constraints require weights or bounds you can enter them in the
Input Variable Values pane. In the example problem, the objective requires specified
weights for the weighted sum of torque, so the column Objective1_weights appears in
the Fixed Variables pane, where you can enter weights for each point.

You can also run a sum optimization over different sets of operating points. Consider the
following example, an optimization of the weighted sum of fuel consumption over two
different drive cycles.

 Set Up Sum Optimizations

6-25



The preceding figure shows an optimization that runs twice (Number of runs has been
set to 2, and the left column under Number of Values shows 2 runs). Each run contains
five operating points (as shown in brackets in the right column under Number of
Values).

The optimization algorithm will be called twice (two runs). In the first run, optimal
settings of S, EXH and INT will be simultaneously calculated for each point in the first
drive cycle, as shown in the following table.
N L
1000 0.3
1100 0.2
1250 0.31
1500 0.25
1625 0.18

In the second run, optimal settings of S, EXH and INT will be calculated for each point in
the second drive cycle, as shown in the following table.
N L
5000 0.55
5214 0.5
5564 0.6

6 Optimization Setup

6-26



N L
5847 0.64
6000 0.7

In the previous examples, the number of values for each variable is identical. It is also
possible to specify a mixture of scalars and vectors for each variable, as shown in the
following example.

The Number of Values controls are independent for each variable. In the preceding
figure:

• S Number of Values = 1
• EXH Number of Values = 5
• INT Number of Values = 1

In this case, the single initial value of S is used for every drive cycle point in the
optimization, and similarly for INT (and the optimizer will return a single value for S and
INT for the run).

Algorithm Restrictions

Each run of a CAGE Optimization makes a call to the algorithm you have chosen to use.
This algorithm needs to evaluate the objectives and constraints (probably several times)
to allow it to determine the optimal settings of the free variables. Optimization
algorithms typically have restrictions on the number of objective and constraint outputs
they can handle. The following table details the restrictions on the two algorithms
provided in CAGE.
Algorithm Name Objectives Constraints
Foptcon One output Any number of outputs
NBI Two or more outputs Any number of outputs

 Set Up Sum Optimizations

6-27



When each objective and constraint is evaluated during a run, the number of outputs it
returns depends on the maximum number of values of all of its inputs. The following
table details the number of outputs each objective type returns as a function of the
maximum number of values of all of its inputs.
Objective
Type

Maximum Number
of Values of All
Inputs to the
Objective

Number of
Outputs

Reason

Point N N A point objective is evaluated at each
operating point within a run, and all
the values are returned.

Sum N One A sum objective evaluates a model at
every operating point and returns one
value, which is the weighted sum of
the model evaluations.

Similarly, the following table details the number of outputs each constraint type returns
as a function of the maximum number of values of all of its inputs.

Constraint
Type

Maximum Number
of Values of All
Inputs to the
Constraint

Number of
Outputs

Reason

Linear N N These constraints are evaluated at
every operating point within a run,
and all values are returned.

Ellipsoid N N
1D Table N N
2D Table N N
Model N N

6 Optimization Setup

6-28



Constraint
Type

Maximum Number
of Values of All
Inputs to the
Constraint

Number of
Outputs

Reason

Range N 0, N or 2N A range constraint evaluates an
expression at each operating point
within a run. The constraint returns
two values for each point, the distance
from the lower and upper bound. In
this case 2N outputs are returned. If
one of the bounds is infinite, then only
the distance to the finite bound is
returned for each point, and N
outputs are returned. If both bounds
are infinite then 0 outputs will be
returned.

Sum N 1 A sum constraint evaluates a model at
every operating point and returns the
difference between the weighted sum
of the model and a bound.

Table N >=8 (dependent
on settings)

A table gradient constraint constrains
the gradient of a free variable over a
grid. The number of outputs returned
depends on the dimensions of the grid.

You can use these three tables to check whether the problem set up satisfies the
algorithm restrictions. As an example, the following table checks whether the example
problem (detailed in “Example Problem to Demonstrate Controls for Sum Optimizations”
on page 6-23) satisfies the restriction of the algorithm chosen to solve it, foptcon.
Objective Maximum Number of Values

of All Inputs
Number of Outputs

Weighted sum of TQ over
the drive cycle points

5 1 (using the Objective table)

Constraint Maximum Number of Values
of All Inputs

Number of Outputs

EXTEMP <= 1290°C at each
drive cycle point

5 5 (using the Constraint
table)

 Set Up Sum Optimizations

6-29



Constraint Maximum Number of Values
of All Inputs

Number of Outputs

RESIDFRAC <= 17% at
each drive cycle point

5 5 (using the Constraint
table)

Change in INT is no more
than 5.5° per 500 rpm and
5.5° per 0.1 change in L

5 24 (this value is the number
of table gradient constraint
outputs generated from a 3-
by-3 table)

Change in EXH is no more
than 5.5° per 500 rpm and
5.5° per 0.1 change in L

5 24 (this value is the number
of table gradient constraint
outputs generated from a 3-
by-3 table)

Thus, the example problem has 1 objective output and 58 constraint outputs. This
satisfies the restrictions of the foptcon algorithm and so the algorithm can be used.

Using Application Point Sets

You can use application point sets to evaluate constraints and objectives at different
operating points than those specified in the optimization. You can only use application
point sets with sum optimizations.

This can be useful for some problems, for example:

• Your calibration problem requires consideration of several drive cycles, defined at
different operating point sets. For example, it is common to have different drive cycles
for performance and emissions.

• You want to apply some constraints only at a subset of the optimization points
(sometimes called “multiregion problems”). For example, there are often different
constraints to consider at full load.

• Your full operating point set of interest is very large and optimizing at every point
will be very slow. You can run an optimization at a subset of points, and evaluate
interpolated results across an application point set.

• You may need to evaluate point-by-point models at different operating points to the
points where the models are defined.

To use an application point set for evaluating an objective or constraint:

1 Right-click the objective or constraint, and select Select Application Point Set.

6 Optimization Setup

6-30



The Select Operating Point Variables dialog box appears.
2 Select a pair of variables to use in application point sets. The variables must be fixed

variables in your optimization. You only select variables once per optimization. Click
OK.

The Select Application Point Set dialog box appears.
3 Select an application point set. You can choose a data set or a New subset of the

optimization points. To select a subset of points, you can use the check boxes or click
points on the plot.

4 View the plot displaying the application points and optimization points. CAGE
extrapolates the optimization results to evaluate the objective or constraint at the
application points.

5 Click OK.

To see example plots that illustrate how CAGE uses application point sets, enter
mbcAppPointSetDemo to load the example project file mbcAppPointSetDemo.cag into
CAGE. Run the optimizations in the project to view the plots.

 Set Up Sum Optimizations

6-31



Set Up Multiobjective Optimizations

In this section...
“Overview of Setting Up Multiobjective Optimizations” on page 6-32
“About the gamultiobj Algorithm” on page 6-33
“About the NBI (Normal Boundary Intersection) Algorithm” on page 6-33

Overview of Setting Up Multiobjective Optimizations

CAGE Optimization contains two algorithms (NBI and gamultiobj) to solve
multiobjective optimization problems. For example, you could use the NBI type of
optimization to determine the optimal torque versus NOx emissions curve for an engine
over the operating range of the engine. To solve this problem you must define two
competing optimization objectives, to maximize torque while minimizing NOx emissions.

To set up a new multiobjective optimization:

1 Use the wizard for “Creating Optimizations from Models” on page 6-8 to create your
optimization. You can configure one of your objectives in the wizard. You must select
either the NBI algorithm or the gamultiobj algorithm to solve a multiobjective
optimization.

Use gamultiobj for multiobjective optimizations with more than two objectives and
those that are not smooth. Such problems can work better with gamultiobj than
with NBI. The gamultiobj algorithm is only available if you have the Global
Optimization Toolbox product installed.

When you select a multiobjective algorithm, the wizard automatically creates a
second blank objective for you. When you finish the wizard and return to the
Optimization view, you can configure the second objective (and add a third if
desired).

2 You can add a boundary model constraint in the wizard. To apply other types of
constraints you must use the Optimization view. You can apply linear, ellipsoid, 1-D
table, 2-D table, and range constraints, and some constraints are specific to sum
optimizations—sum constraints and table gradient constraints.

See “Edit Constraint” on page 6-55 for details of all these constraints.

6 Optimization Setup

6-32



3 You can use the wizard to choose the points where you want to run the optimization.
You can select a suitable table grid, data set, point-by-point model operating points,
or use the variable set points. You can also set up your optimization variable values
in the Optimization view. See “Edit Variable Values” on page 6-44. You can enter
values manually or import them from data sets, tables, or the output of existing
optimizations.

4 Run the optimization using the procedure for “Run Optimizations” on page 6-60.

Click Run Optimization in the toolbar to run the optimization with the default
settings.

5 View the results (see “Viewing Your Optimization Results” on page 7-18). For
descriptions of optimization output specific to multiobjective problems, see “Tools for
Optimizations with Multiple Solutions” on page 7-51 and “Analyzing Multiobjective
Optimization Results” on page 7-67.

About the gamultiobj Algorithm
The gamultiobj algorithm uses the gamultiobj function from the Global Optimization
Toolbox product, and is only available if you have the Global Optimization Toolbox
product installed.

For details on the gamultiobj function, see “Multiobjective Optimization” (Global
Optimization Toolbox) in Global Optimization Toolbox. For CAGE options, see
“gamultiobj Optimization Parameters” on page 6-69.

To analyze results, see “Tools for Optimizations with Multiple Solutions” on page 7-51
and “Analyzing Multiobjective Optimization Results” on page 7-67.

About the NBI (Normal Boundary Intersection) Algorithm
To understand the options for the NBI algorithm, some limited understanding of the
algorithm is required. For more information on the NBI algorithm, see the following
reference:

Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in
Nonlinear Multicriteria Optimization Problems, I. Das and J.E. Dennis, SIAM J. on
Optimization. 8(3), 631-657 (1998).

The NBI algorithm is performed in two steps. The first step is to find the global of each
objective individually. This is called the shadow minima problem, and is a single-

 Set Up Multiobjective Optimizations

6-33



objective problem for each objective function. The MATLAB routine fmincon is used to
find these . Once these are found, they can be plotted against each other. For example,
consider an NBI optimization that simultaneously maximizes TQ and minimizes NOX
emissions. A plot of the against each other might resemble the following.

Best possible
value of TQBest possible

value of NOx

TQ

NOx

N

The second step is to find the "best" set of tradeoff solutions between your objectives. To
do this, the NBI algorithm spaces Npts start points in the (n-1) hypersurface, S, that
connects the shadow . In the above example, S is the straight line that connects the
points N and T. For each of the Npts points on S, the algorithm tries to maximize the
distance along the normal away from this surface (this distance is labeled L in the
following figure). This is called the NBI subproblem. For each of the points, the NBI
subproblem is a single-objective problem and the algorithm uses the MATLAB fmincon
routine to solve it. This is illustrated below for the TQ-NOX example.

6 Optimization Setup

6-34



TQ

NOx

N

T

L

The figure above shows spacing of the points between the along the (n-1) surface. The
algorithm tries to maximize the distance L along the normal away from the surface. The
following figure shows the final solution found by the NBI algorithm.

 Set Up Multiobjective Optimizations

6-35



TQ

NOx

Pareto front

Solutions in this region are not optimal.

To see how the NBI settings are used in the Optimization Parameters dialog box, see
“NBI Optimization Parameters” on page 6-64.

6 Optimization Setup

6-36



Set Up Modal Optimizations
In this section...
“What Is Modal Optimization?” on page 6-37
“Workflow for Modal Optimization” on page 6-37
“Creating Modal Optimizations” on page 6-38
“Adding Extra Objectives to Modal Optimizations” on page 6-40

What Is Modal Optimization?
You can use the modal optimization algorithm to produce optimal calibrations for
engines with multiple operating modes. This algorithm helps you choose the best
operating mode for each operating point. The algorithm can optimize an objective for
each operating mode and select the best solution automatically. You must use a
composite model for these optimizations. See “What Are Composite Models?” on page 2-
26

The optimization output views help you view and select the best solution for each
operating point.

Workflow for Modal Optimization
To find the best mode at each operating point, use the following workflow:

1 Create a composite model representing the multiple operating modes. See “Creating
and Viewing Composite Models in CAGE” on page 2-26.

2 Using the Create Optimization From Model wizard, select the Modal
optimization algorithm. The wizard then selects the mode input as a free variable.

3 (Optional) Add additional objectives in the Optimization view. You can optimize with
one objective, and use the other objectives to explore the results with graphical
comparisons. You can optionally choose a different objective to use to select the best
mode.

4 After running the optimization, use the optimization output graphical tools to view
the solutions and decide which mode you want to use for each operating point.

The modal optimization algorithm tries to automatically select the best mode for
each operating point. Use the optimization output node tools to view all solutions

 Set Up Modal Optimizations

6-37



and see which solution is selected. You can change the selections manually if you
want. These features are also useful for selecting solutions for multiple objective
optimizations, such as NBI.

You can only use modal optimization for point optimization problems. When you have
selected the best mode for each operating point, you can create a sum optimization from
your modal optimization results. The toolbox automatically creates a sum optimization
for you with your selected best mode for each operating point.

To analyze your results, see “Analyzing Modal Optimization Results” on page 7-57.

Examples of Modal Optimizations

Creating Modal Optimizations

To create a modal optimization using a composite model, use the Create Optimization
From Model wizard.

1 Select Tools > Create Optimization From Model (or use the toolbar button).

The Create Optimization From Model Wizard appears.
2 Select a composite model to minimize or maximize in the optimization. If you are

viewing a model, then the wizard automatically selects that current model.

Click Next.
3 Select the Modal optimization algorithm. The wizard selects the mode input as a

free variable. Do not change the Point optimization type.

Specify other optimization information:

• Maximize or minimize
• Data source for optimization (for example, if you have a suitable table grid to use

for optimization points)
• Free variables
• Boundary constraint

6 Optimization Setup

6-38



Click Finish to create the optimization.

For more information on the options in the wizard, see “Creating Optimizations from
Models” on page 6-8.

In the Optimization view check the Optimization Information pane to confirm your
setup. Modal optimizations show the mbcOSmodalopt algorithm name and a mode
variable, as shown in the following example.

 Set Up Modal Optimizations

6-39



Your optimization is ready to run, unless you want to change the optimization points, or
add constraints or extra objectives. For next steps, see “Adding Extra Objectives to Modal
Optimizations” on page 6-40 and “Analyzing Modal Optimization Results” on page 7-
57.

Adding Extra Objectives to Modal Optimizations

You can optionally add additional objectives in the Optimization view. You can optimize
with one objective, and use the other objectives to explore the results with graphical
comparisons. You may want to manually change the selected best mode based on the
values of these additional “helper” objectives. You can optionally choose to automatically
select the best mode with a different objective.

(Optional) To add extra objectives,

1 In the Optimization view, right-click the Objectives pane and select Add Objective.
Set up the extra objective as described in “Edit Objective” on page 6-53.

2 (Optional) You can change which objective to use to select the best mode. By default
CAGE uses the first objective to select the best mode, but in some cases you may
want to change this. To change this setting,

a Select Optimization > Set Up or click the toolbar button.

The Optimization Parameters dialog box appears.
b Edit the setting Index to the objective to determine best mode. The default

is 1, so CAGE uses the optimized values of the first objective to select the best
mode. Change the index if you want to use a different objective.

c Click OK.

For next steps, see “Analyzing Modal Optimization Results” on page 7-57.

6 Optimization Setup

6-40



Set Up MultiStart Optimizations
In this section...
“What Is MultiStart Optimization?” on page 6-41
“Creating a MultiStart Optimization” on page 6-41

What Is MultiStart Optimization?

If you have Global Optimization Toolbox, you can use the MultiStart algorithm in
CAGE. This algorithm can identify multiple local optimum solutions to help you create
smoother tables. Multiple local optimum solutions are often found because of the flat
nature of engine responses. The difference in performance between solutions can be
small and result in tables that are not smooth enough. The MultiStart algorithm tries
to identify multiple optimum solutions by running multiple start points for each
operating point. You can select the solutions that meet your table smoothness constraints
based on the entire table.

The optimization output views help you view and select the best solution for each
operating point.

Creating a MultiStart Optimization
1 Select Tools > Create Optimization from Model (or click the toolbar button) to

open the Create Optimization From Model wizard.
2 Select a model to minimize or maximize in the optimization. If you are viewing a

model, the wizard selects that current model.

Click Next.
3 Select the MultiStart algorithm as shown next. Do not change the Point

optimization type.

 Set Up MultiStart Optimizations

6-41



4 Specify other optimization information:

• Maximize or minimize
• Data source for optimization (for example, if you have a suitable table grid to use

for optimization points)
• Free variables
• Boundary constraint

5 Click Finish to create the optimization.

(Optional) To change the number of start points to run:

1 In the Optimization view, select Optimization > Set Up or click the Set up
optimization toolbar button.

The Optimization Parameters dialog box opens.

6 Optimization Setup

6-42



2 Change the Number of start points. This setting determines how many
optimizations to run for each point.

3 Click OK.

Start points is the most common parameter you may want to change. For information on
other parameters see “MultiStart Optimization Parameters” on page 6-68.

 Set Up MultiStart Optimizations

6-43



Edit Variable Values
In this section...
“What Are Variable Values?” on page 6-44
“Define Variables Manually” on page 6-44
“Import from a Data Set” on page 6-46
“Import from Output” on page 6-47
“Import from Table Grid” on page 6-50
“Import from Table Values” on page 6-51

What Are Variable Values?

In the optimization view, the Variable Values panes define the set of operating points for
the optimization. If you use the wizard for “Creating Optimizations from Models” on page
6-8, you can choose to set up operating points automatically in the wizard. You can
choose to use the variable set points, a data set, a table grid, or model operating points (if
you have point-by-point models). When you close the wizard, CAGE displays your chosen
points in the Variable Values panes. You can use the Variable Values panes to edit your
optimization operating points.

You do not have to choose a set of operating points; you can run the optimization at a
single point.

Running the optimization requires the selected models to be evaluated (many times over)
and hence values are required for all the model input factors. Choose values for the fixed
variables in the Fixed Variables pane. You chose one or more free variables, so the
optimization chooses different values for those free variables in trying to find the best
value of the objectives. The initial values for a free variable are shown in the Free
Variables pane.

To define the set of operating points for the optimization, you can define variables
manually, or you can import values from these sources: data set, optimization output,
table grid, or table values.

Define Variables Manually

To define values manually:

6 Optimization Setup

6-44



1 In the Input Variable Values pane, select the Number of runs. New rows appear
for both fixed and free variables, all containing the default set point values of each
variable. Each row defines an operating point for an optimization run.

2 Edit the values in the Fixed Variables pane to define the points where you want to
run the optimization.

• You can copy and paste values from other parts of CAGE (existing optimizations
or data sets etc.), or from the Help Browser or other documents.

• You can select Optimization > Import From Data Set if you have suitable
variables to import.

• You can select Optimization > Import From Output if you have suitable
optimization outputs.

An example is shown in the following figure.

3 Edit the values in the Free Variables pane in a similar way, if you want to define
the starting values of the free variables, or you can leave these at the default.

• For foptcon optimizations you can specify a number of initial starting values per
run, see “foptcon Optimization Parameters” on page 6-62.

• If you wish to restrict the range of the free variables, you can select
Optimization > Edit Free Variable Ranges. The default is the range of the
variable as defined in the Variable Dictionary.

4 Use the right-click context menu to duplicate or delete runs, or select Fill All Runs
to copy the selected run's values to all other runs.

The Number of Values controls are for sum optimizations. See “Using Variable Values
Length Controls” on page 6-24.

 Edit Variable Values

6-45



Import from a Data Set
1 Select Optimization > Import From Data Set (or use the toolbar button) to define

the operating points for an optimization from a data set, if you have suitable
variables to import. The Import From Data Set dialog box appears.

2 Select a data set.
3 Select data set columns to import.

6 Optimization Setup

6-46



4 Choose whether you want a run per data set row (alter number of runs), or each
imported variable to have the same length as the number of data set rows (alter
length). For information on altering the length of variables (for sum optimizations
only), see “Using Variable Values Length Controls” on page 6-24.

5 Click OK to import the variable values.

Import from Output

1 Select Optimization > Import From Output to import starting values from the
output values of a previous optimization. The Import From Output dialog box
appears.

 Edit Variable Values

6-47



2 Select the desired optimization output.
3 Select the columns from the output you want to import.
4 Choose the runs from the optimization output that you want to use. The Selection

within output controls allow you to choose a subselection. If the number of values
per run differs between current inputs and selected outputs, the inputs are altered to
match.

• Select the option button All to import all runs.

6 Optimization Setup

6-48



• Select the option button Selection to import a subset of runs. You can enter a
vector specifying the runs you want to import (e.g., 1 3 6:9), or click the button
Select in Table to open a dialog box and select runs manually.

• Select the option button Acceptable to use only the runs with a selected Accept
check box. See “Choosing Acceptable Solutions” on page 7-2. Click the button
Select in Table to open a dialog box and view or edit the selection.

• Select the option button Unacceptable to use only the runs without a selected
Accept check box. Click the button Select in Table to open a dialog box and view
and edit the selection.

• For multiobjective optimizations you can choose to use the selected solutions or a
solution number.

5 Use the Import options buttons to choose whether you want a run per output row
(alter number of runs), or each imported variable to have the same length as the
number of output rows (alter length).

If you click the button Select in Table you see the following dialog box.

 Edit Variable Values

6-49



Highlight cells in the table (Shift+click, Ctrl+click, or click and drag) to select runs to
import.

If you chose a subselection on the parent dialog box (e.g., a vector of runs or an
acceptable status), the table appears prefiltered with runs selected by those choices. You
can filter again for acceptable status on this dialog box: select Acceptable or
Unacceptable from the drop-down list and click the Select button.

If there are multiple solutions in the output you can browse them with the Solution
controls.

When you are satisfied with the selected runs, click OK to return to the Import From
Output dialog box. Click OK to import the runs.

Import from Table Grid
1 Select Optimization > Import From Table Grid to import starting values from

the breakpoint values of a table. The Import From Table Grid dialog box appears.

2 Select the desired table in the list.
3 Use the Import options buttons to choose whether you want a run per table cell

(alter number of runs), or each imported variable to have the same length as the
number of table cells (alter length).

6 Optimization Setup

6-50



4 Click OK.

When you click OK, values for each table cell are imported into the optimization input
variable values pane, e.g., for a 10 by 10 table, 100 starting points are imported.

Import from Table Values
1 Select Optimization > Import From Table Values to import starting values from

the evaluation of a table. The Import From Table Values dialog box appears.

2 For each input you want to import, select the appropriate table from the Fill Input
With list.

The check box for an input is automatically selected when you select a table for it.

You cannot choose to fill an input with a table that depends on it.
3 Click OK.

When you click OK, your selected optimization inputs are replaced with an evaluation of
the table at the current optimization values. Other inputs are not altered.

 Edit Variable Values

6-51



Edit Objectives and Constraints
In this section...
“Overview of Objectives and Constraints” on page 6-52
“Edit Objective” on page 6-53
“Edit Constraint” on page 6-55

Overview of Objectives and Constraints

When you create your optimization, you can set up initial objectives and a boundary
constraint within the Create Optimization from Model wizard. You can add and edit
constraints and objectives in the main CAGE Optimization view.

You can perform the following tasks by using the right-click context menu or
Optimization menu (if allowed by the algorithm—foptcon can only have a single
objective):

• You can Add, Edit, Delete, or Rename objectives and constraints.
• For objectives, if your objective model has a boundary model, you can select Add

modelname Boundary to Constraints. This shortcut allows you to set up a
boundary constraint without needing to open the Edit Constraint dialog box.

• For constraints, you can:

• Select Duplicate to copy an existing constraint.
• Select Import to copy existing constraints from another suitable optimization

(with common free variables) in your session. Values for any new variables are
only imported if the number of points in the optimization match.

• Select Disable to remove constraints without deleting them, and use Enable to
reapply them.

• For objectives and constraints, you can Select Application Point Set. See “Using
Application Point Sets” on page 6-30.

Double-click to edit existing objectives and constraints in the Objectives or
Constraints panes. This opens the Edit Objective or Edit Constraint dialog boxes.

You can run two types of optimizations, point optimizations and sum optimizations.
Point optimizations look for the optimal values of each objective function at each point of

6 Optimization Setup

6-52



an operating point set. A sum optimization finds the optimal value of a weighted sum of
each objective function. The weighted sum is taken over each point, and the weights can
be edited. For an example, see the tutorial section “Sum Optimization” in the Getting
Started documentation.

You can set up sum objectives either in the Create Optimization from Model wizard or
the Edit Objective dialog box.

You need to use the Edit Constraint dialog box to set up model sum constraints. You
cannot set up sum constraints from the Create Optimization from Model wizard or the
Optimization Wizard.

You can also set up linear, 1- and 2-D table, and ellipsoid constraints in the Edit
Constraint dialog box, as for designs in the Model Browser part of the Model-Based
Calibration Toolbox product.

Edit Objective
Double-click or right-click objectives to open the Edit Objective dialog box.

You can select Point objective or Sum objective from the Objective type drop-
down menu. Use sum objectives only for weighted sum optimizations; otherwise, use
point objectives.

 Edit Objectives and Constraints

6-53



You can rename the objective by editing the Objective name edit box, to aid analysis in
the Optimization views. This may be disabled for user-defined optimizations.

Point Objectives

The preceding example shows the point objective controls. Select which models from your
session you want to use for the optimization, and whether you want to maximize or
minimize the model output. The foptcon algorithm is for single objectives, so you can
only maximize or minimize one model. The NBI algorithm can evaluate multiple
objectives. For example, you might want to maximize torque while minimizing NOX
emissions.

You can also include 'helper' models in your user-defined optimizations, so you can view
other useful information to help you make optimization decisions (this is not enabled for
NBI or foptcon).

These are the same options you can choose in the Optimization Wizard. See
“Optimization Wizard Step 4” on page 6-17.

Sum Objectives

For weighted sum optimizations, the objectives are typically sum objectives. See the
following example.

6 Optimization Setup

6-54



As for point objectives, select which models from your session you want to use for the
optimization, and whether you want to maximize or minimize the model output.

You can edit weights in the Optimization view, to make certain operating points more
important, giving more flexibility to solutions for other points. You can edit the weights
in the Fixed Variables pane. This is the same process as selecting weights for the
Weighted Pareto View. See “Weighted Objective Pareto Slice” on page 7-68.

For a tutorial example of a sum optimization, see “Sum Optimization” in the Getting
Started documentation.

Edit Constraint

You can rename the constraint by editing the Constraint name edit box, to aid analysis
in the Optimization views. This may be disabled for user-defined optimizations.

Select a Constraint type in the drop-down menu. The first four choices are the same as
the following design constraint types:

 Edit Objectives and Constraints

6-55



• “Linear Constraints”
• “Ellipsoid Constraints”
• “1-D Table Constraints”
• “2-D Table Constraints”

These are the same constraints you can apply to designs in the Model Browser part of the
Model-Based Calibration Toolbox product.

In the context of optimization you can select constraint inputs on the additional Inputs
tab. You can select any variable or model as an input into constraints. The default selects
the free variables where possible. Models are treated as nonlinear functions, so if you
choose to feed a model into a linear constraint it will make that constraint nonlinear. You
are not able to access it as a linear constraint in user-defined optimization scripts.

For optimization constraints you can also select the following constraint types:

• “Model Constraints” on page 6-56
• “Range Constraints” on page 6-57
• “Sum Constraints” on page 6-58
• “Table Gradient Constraints” on page 6-58

Model Constraints

To construct a model constraint:

1 Select an Input model in the left list.
2 You can use the Evaluate quantity drop-down list to choose Evaluation value,

Boundary constraint, or PEV value (model prediction error variance) to define
your constraint.

3 Choose the appropriate option button to either enter a value in the Constant edit
box, or to select a CAGE item from the list of models or variables.

4 Select the Constraint type operator to define whether the optimization output
should be constrained to be greater than, less than, or equal to the constant or item
value specified on the right.

5 Check the displayed Constraint description, and click OK.

The model constraint settings are shown in the following figure.

6 Optimization Setup

6-56



Range Constraints

You can specify an upper and lower bound to constrain expressions (which can be
variables, models or tables). You can specify bounds with constants, vectors, variables,
models, or tables.

1 Select a CAGE item to constrain on the Bound Expression tab. Use the drop-down
menu to switch between variables, models, or tables, and then select the item to
constrain. For appropriate models you can also choose to constrain either the PEV or
evaluation value.

2 On the Lower Bound tab, select an option button to choose whether to use a
constant, vector, or CAGE item to specify the bound.

• For constants, enter a value.
• For vectors, you can enter the lower bound for each point in the Input Variable

Values pane in the Optimization view after you close the Edit Constraint dialog
box.

 Edit Objectives and Constraints

6-57



• For CAGE items, use the drop-down menu to switch between variables, models,
or tables, and then select the item to specify the lower bound. For appropriate
models you can also choose to use either the PEV or evaluation value.

3 Specify the upper bound on the Upper Bound tab in the same way as you specified
the lower bound on the Lower Bound tab.

4 Check the displayed Constraint description, and click OK.

For a detailed explanation of range constraint outputs, see “Range Constraint Output” on
page 7-30.

Sum Constraints

Use these for weighted sum optimizations. Choose a model, constraint bound value and
an operator.

You can have a mixture of point and sum constraints.

See the tutorial “Sum Optimization” in the Getting Started documentation for a step-by-
step example, and for descriptions of optimization output specific to sum problems, see
“Interpreting Sum Optimization Output” on page 7-73.

Table Gradient Constraints

Table Gradient constraints must be used in sum optimizations. Unless you are using a
user-defined optimization, for Table Gradient constraints, use a sum objective. You
cannot run point optimizations that contain table gradient constraints.

Table Gradient constraints allow you to constrain the gradient of a free variable or model
over a grid of fixed variables.

1 Select a free variable or model to constrain.
2 Specify one or two fixed variables, and a grid of points either manually or by

selecting table axes.
3 Enter values in the Maximum change and Axis value change edit boxes to

specify the maximum change in the free variable or model per amount of fixed
variable change between cells. For example, enter 5 and 1000 to specify 5 degrees
maximum change in cam angle per 1000 rpm.

4 To set upper limits or lower limits in a table gradient constraint, specify a two
element row vector in the Maximum change edit box. e.g., [-5 20].

6 Optimization Setup

6-58



Use Inf if you only want to specify a lower or upper bound, e.g., enter [0 Inf] to
specify a table gradient > 0, and [-Inf 0] to specify a table gradient < 0.

5 Check the displayed Constraint description, and click OK.

See Also

More About
• “Table Gradient Constraint Output” on page 7-78

 See Also

6-59



Run Optimizations
When you have created an optimization, your new optimization appears as a new node in
the tree pane on the left, and the setup details appear on the right. An example follows:

If your optimization is ready to run you can click Run Optimization in the toolbar to
proceed. You may want to edit variable values, constraints or objectives before running
the optimization. If you need to set up any objectives or constraints Run will not be
enabled. If your optimization is ready to run you can also click Set Up and Run
Optimization if you want to change algorithm-specific settings such as number of
required solutions and tolerances for termination.

• If you click Set Up and Run Optimization, you can change settings in the
Optimization Parameters dialog box. Then when you click OK the optimization
process begins. See “Edit Optimization Parameters” on page 6-62.

6 Optimization Setup

6-60



• If you click Run Optimization instead, you do not see the optimization settings, but
go straight to running the optimization.

You will see a progress bar as the optimization proceeds. When it is finished, a new
Output node appears under your Optimization node in the tree and the view
automatically switches to this node where you can analyze the results. An example tree
is shown in the following figure. For information on viewing and using your results, see
“Optimization Analysis”.

 Run Optimizations

6-61



Edit Optimization Parameters

In this section...
“Overview of the Optimization Parameters Dialog Box” on page 6-62
“foptcon Optimization Parameters” on page 6-62
“NBI Optimization Parameters” on page 6-64
“GA Optimization Parameters” on page 6-65
“Pattern Search Optimization Parameters” on page 6-66
“Modal Optimization Parameters” on page 6-68
“MultiStart Optimization Parameters” on page 6-68
“gamultiobj Optimization Parameters” on page 6-69
“Scale Optimization” on page 6-70

Overview of the Optimization Parameters Dialog Box

The settings in the Optimization Parameters dialog box are algorithm specific.

If you edit these settings and later want to return to the defaults, select Optimization >
Reset Parameters. If you add parameters to user-defined optimization scripts, you may
need to use this reset option to make all new parameters appear in the dialog box.

foptcon Optimization Parameters

The foptcon optimization algorithm in CAGE uses the MATLAB fmincon algorithm
from the Optimization Toolbox product. foptcon wraps up the fmincon function so that
you can use the function for maximizing as well as minimizing. For more information,
see the fmincon reference page in the Optimization Toolbox documentation, fmincon.

• Display — choose none, iter, or final. This setting determines the level of
diagnostic information displayed in the MATLAB workspace.

• none — No information is displayed.
• iter — Displays statistical information every iteration.
• final — Displays statistical information at the end of the optimization.

6 Optimization Setup

6-62



• Maximum iterations — Choose a positive integer.

Maximum number of iterations allowed
• Maximum function evaluations — Choose a positive integer.

Maximum number of function evaluations allowed
• Variable tolerance — Choose a positive scalar value.

Termination tolerance on the free variables
• Function tolerance — Choose a positive scalar value.

Termination tolerance on the function value
• Constraint tolerance — Choose a positive scalar value.

Termination tolerance on the constraint violation
• Constraint optimization algorithm — Choose one of the fmincon function

algorithms: active-set, sqp, interior-point. Try the default first, interior-
point. Try sqp or interior-point with sum optimizations which are slow or have
problems converging. Optimizations created before Release 2010a do not have this
setting.

• Minimum/maximum change in variables for gradient

Choose a positive scalar to control the input step size that is taken when gradients
are being calculated. The default settings should work for the majority of problems.

• Number of start points — Choose a positive integer, N. (N-1) start points per run
are generated in addition to the starting value specified in the Input Variable Values
pane.

The optimization runs from each of the N start points (possibly subject to feasibility,
see Run from feasible start points only option) and the best solution is chosen.

The N-1 extra start points are generated as follows:

1 Generate a 10000 point Halton set design, D, over the free variables.
2 Evaluate the objectives and constraints over D.
3 Return the N-1 feasible points with the lowest objective value.

If there are not N-1 feasible points, fill the remaining starting values with the
points with the lowest maximum constraint violation.

 Edit Optimization Parameters

6-63



Note For point optimization problems, it is strongly recommended that you set
Number of start points to either 1 or 2.

• Run from feasible start points only — Select this option to terminate all runs that
start with an initial value that does not satisfy the constraints. If this condition is not
met this is reported in Output message, in the Solution Information pane of the
Optimization Output view.

• Interface version — This option is only enabled when a user-defined optimization
script does not specify a version to use. Some existing user-defined optimization
scripts may require setting the interface version as 2 or 3, according to the toolbox
version. Version 3 is preferable, but may not work with all old scripts. See
setRunInterfaceVersion for details.

NBI Optimization Parameters

The NBI algorithm is for multiobjective optimizations. For more details see “Set Up
Multiobjective Optimizations” on page 6-32.

View and edit the NBI options in the Optimization Parameters dialog box.

NBI Options

• Tradeoff points per objective pair (Np)

Specify how many tradeoff solutions you want the optimization to find per run.

The number of tradeoff solutions between your objectives that you want to find, Npts,
is determined by the following formula:

where

• Np is the number of points per objective pair.
• n is the number of objective functions.

Note the following:

• For problems with two objectives (n = 2),

6 Optimization Setup

6-64



• For problems with three objectives (n = 3),

• Shadow minima options and NBI subproblem options

The NBI algorithm uses the MATLAB fmincon algorithm to solve the shadow
minima problem and the NBI subproblems, the options available are similar to those
for the foptcon library function. For more information on these options, see the
previous section, “foptcon Optimization Parameters” on page 6-62.

For more information on the NBI algorithm, see “About the NBI (Normal Boundary
Intersection) Algorithm” on page 6-33.

GA Optimization Parameters

The ga optimization algorithm in CAGE uses the MATLAB ga algorithm from Global
Optimization Toolbox product. In CAGE, ga wraps up the ga function from this toolbox
so that you can use the function for maximizing as well as minimizing. If you have Global
Optimization Toolbox product installed, see “Genetic Algorithm” (Global Optimization
Toolbox).

• Display — choose none, iter, final, or diagnose. This setting determines the
level of diagnostic information displayed in the MATLAB workspace.

• none — No information is displayed.
• iter — Displays statistical information every iteration.
• final — Displays statistical information at the end of the optimization.
• diagnose — Displays information at each iteration. In addition, the diagnostic

lists some problem information and the options that have been changed from the
defaults.

• Crossover function — Choose a function to use to generate new population
members from the existing GA population by crossover. For more information on each
function, see the Crossover Options section in the Global Optimization Toolbox
documentation. It is recommended not to use a heuristic crossover function for
nonlinearly constrained problems.

• Crossover fraction — Choose a scalar in the range [0 1]. This parameter specifies
the fraction of the next generation, other than elite children, that is produced by
crossover.

 Edit Optimization Parameters

6-65



• Mutation function — Choose a function to use to generate new population members
from the existing GA population by mutation. The fraction of the next generation,
other than elite children, that is produced by mutation is (1 minus Crossover
fraction). Also, for nonlinearly constrained problems, the mutation function must be
set to adaptfeasible.

• Selection function — Choose a function to use to select the population members
that will be used as the parents for the crossover and selection functions.

• Population size — Choose a positive integer value. Number of population members
used by the algorithm. See the Global Optimization Toolbox documentation for
guidelines on setting the population size.

• Generations – Choose a positive integer value. The algorithm stops when the
number of generations reaches the value of Generations.

• Hybrid function — Choose an optimization function that will run after the GA has
terminated to try to improve the value of the objective function. Note that if the
algorithm has nonlinear constraints, the hybrid function cannot be fminunc or
fminsearch. If either of these algorithms is selected in this case, the hybrid
algorithm switches to fmincon.

• Stall generations — Choose a positive integer value. The algorithm stops when the
weighted average change in the objective function over Stall generations is less
than Function tolerance.

• Stall time limit – Choose a positive scalar value. The algorithm stops if there is no
improvement in the objective function during an interval of time in seconds equal to
Stall time limit.

• Function tolerance — Choose a positive scalar value. The algorithm runs until the
weighted average change in the fitness function value over Stall generations is less
than Function tolerance.

• Constraint tolerance – Choose a positive scalar value. This tolerance determines
whether a population member is feasible with respect to the nonlinear constraints.

• Time limit – Choose a positive scalar value. The algorithm stops after running for an
amount of time in seconds equal to Time limit.

Pattern Search Optimization Parameters

The patternsearch optimization algorithm in CAGE uses the MATLAB
patternsearch algorithm from Global Optimization Toolbox product. In CAGE,
patternsearch wraps up the patternsearch function from this toolbox so that you

6 Optimization Setup

6-66



can use the function for maximizing as well as minimizing. If you have the Global
Optimization Toolbox product installed, see “Direct Search” (Global Optimization
Toolbox).

• Display — Choose none, iter, final, or diagnose. This setting determines the
level of diagnostic information displayed in the MATLAB workspace.

• none — No information is displayed.
• iter — Displays statistical information at every iteration.
• final — Displays statistical information at the end of the optimization.
• diagnose — Displays information at each iteration. In addition, the diagnostic

lists some problem information and the options that have been changed from the
defaults.

• Time limit – Choose a positive scalar value. The algorithm stops after running for an
amount of time in seconds equal to Time limit.

• Maximum number of iterations — Choose a positive scalar value. This parameter
specifies the maximum number of iterations performed by the algorithm.

• Maximum function evaluations — Choose a positive integer value. The algorithm
stops if the number of function evaluations reaches this value.

• Variable tolerance — Choose a positive scalar value. The algorithm stops if the
distance between two consecutive free variable values is less than the variable
tolerance.

• Function tolerance — Choose a positive scalar value. The algorithm stops if the
distance between two consecutive objective function values and the mesh size are both
less than Function tolerance.

• Constraint tolerance – Choose a positive scalar value. Determine feasibility with
respect to the nonlinear constraints.

• Mesh tolerance — Choose a positive scalar value. The algorithm stops if the mesh
size is smaller than Mesh tolerance.

• Initial mesh size — Choose a positive scalar value. Sets the initial size of the mesh
for the pattern search algorithm. Do not set this value too small, as insufficient size
may lead to the algorithm getting trapped in local optima.

• Poll method – Choose a poll method from the drop-down list. This parameter sets
the polling strategy that will be used by the pattern search algorithm. Generally, the
GPSPositiveBasis2N and MADSPositiveBasis2N methods will be slower than the
GPSPositiveBasisNp1 and MADSPositiveBasisNp1 methods. However, the

 Edit Optimization Parameters

6-67



former methods perform a more thorough search. For more information on these
methods, consult the Global Optimization Toolbox documentation.

• Search method — Choose a search method from the drop-down list. This parameter
selects a function that will perform a search in addition to that performed by the
pattern search algorithm. For automotive problems, searchlhs tends to perform
well. For details on possible search methods, consult the Global Optimization Toolbox
documentation.

Modal Optimization Parameters
Use the Modal optimization algorithm with a composite model to select the best
operating mode for each operating point. The algorithm uses the foptcon algorithm to
optimize an objective for each operating mode and select the best solution.

Modal optimization has the same parameters as foptcon, plus two additional
parameters:

• Index to mode free variable — Specify mode variable (only for optimizations
created with the Optimization Wizard). If you use the Create Optimization from
Model wizard, you select your mode variable during setup and do not need to set this
index on the Optimization Parameters dialog box. If you use the Optimization Wizard
to create your optimization, then you must use this setting to specify your mode
variable.

• Index to the objective to determine best mode — (Optional) Choose which
objective (if you have multiple) to use to select best mode. The default is 1, so CAGE
uses the optimized values of the first objective to select the best mode. Change the
index to use a different objective.

See “Set Up Modal Optimizations” on page 6-37.

MultiStart Optimization Parameters
The MultiStart optimization algorithm in CAGE uses the MultiStart algorithm from
Global Optimization Toolbox product. The MultiStart algorithm tries to identify
multiple optimal solutions for each operating point. You can set a subset of the algorithm
options in CAGE. If you have Global Optimization Toolbox, see “How GlobalSearch and
MultiStart Work” (Global Optimization Toolbox).

In CAGE, the MultiStart algorithm uses the fmincon algorithm to optimize an
objective for multiple start points at each operating point, and selects the best solution.

6 Optimization Setup

6-68



You can specify the number of start points and other options in the Optimization
Parameters dialog box.

• Number of start points — Choose the number of start points per operating point
(default is 10).

• Start point set type — Choose Sobol Set (space-filling start points) or Random
(random start points).

• Start points to run — Choose all or bounds-ineqs. Use bounds-ineqs to run
only feasible start points that meet constraints.

• Run start points in parallel — Choose never or always to run each start point in
parallel. Ensure the Distribute Runs optimization option is turned off for the start
points to run in parallel. See “Parallel Computing in Optimization” on page 6-3.

• Tolerance for separate objective values — Specify how far apart objective values
must be to qualify as separate local optima.

• Tolerance for separate solutions — Specify how far apart solution free variable
values must be to qualify as separate solutions.

• Local optimization solver — Specify fmincon options. See “foptcon Optimization
Parameters” on page 6-62 for these options.

See “Set Up MultiStart Optimizations” on page 6-41.

gamultiobj Optimization Parameters

The gamultiobj algorithm uses the gamultiobj function from the Global Optimization
Toolbox product.

If you have Global Optimization Toolbox, see “Multiobjective Optimization” (Global
Optimization Toolbox).

The optimization parameters for gamultiobj are similar to the options for GA, with
some additional options specific to gamultiobj. See “GA Optimization Parameters” on
page 6-65 and gamultiobj.

Use a point optimization to find feasible start points for a sum optimization, then select
Solution > Create Sum Optimization. CAGE sets a default population size of 200 for
the gamultiobj sum optimization. If CAGE does not find a feasible solution, try
increasing the population size in the Optimization Parameters dialog box. Larger
populations increase the chance of finding feasible points, but take longer to compute.

 Edit Optimization Parameters

6-69



Scale Optimization

The Optimization menu contains the option to Scale Optimization Items — Select
this to toggle scaling on and off. When you select scaling on, objective and constraint
evaluations are (approximately) scaled onto the range [-1 1]. With scaling off, when you
run the optimization the objective and constraint evaluations return their raw numbers.

Try running your optimization with scaling off, which is the default setting, to see if it
converges to a satisfactory solution (check the output flags and the contour view). If your
optimization solution is unsatisfactory, check to see if the objective and constraint
functions have vastly different scales. In this case, try turning scaling on, because these
optimization problems may benefit from objective and constraint evaluations being
scaled to a common scale.

The output view always shows the solutions in raw, unscaled values, whether or not you
use scaling to evaluate the problem.

6 Optimization Setup

6-70



Optimization Analysis

This section includes the following topics:

• “Using Optimization Results” on page 7-2
• “Filling Tables from Optimization Results” on page 7-9
• “Viewing Your Optimization Results” on page 7-18
• “Analyzing Point Optimization Output” on page 7-36
• “Tools for Optimizations with Multiple Solutions” on page 7-51
• “Analyzing Modal Optimization Results” on page 7-57
• “Analyzing MultiStart Optimization Results” on page 7-63
• “Analyzing Multiobjective Optimization Results” on page 7-67
• “Interpreting Sum Optimization Output” on page 7-73

7



Using Optimization Results
In this section...
“Choosing Acceptable Solutions” on page 7-2
“Create Sum Optimization from Point Optimization Output” on page 7-4
“Exporting to a Data Set” on page 7-4
“Custom Fill Function Structure” on page 7-6

Choosing Acceptable Solutions
After you run an optimization, an Output node appears in the optimization tree and the
Optimization Output views appear. CAGE provides tools for analyzing your results
with these views.

CAGE automatically selects successful optimization solutions and highlights
unsuccessful solutions for you to investigate. These selections are shown in the icons and
check boxes next to the Run column in the Optimization Results table, and shown in the
Results Surface and Results Contour views. You can change the selections using the
check boxes for each solution, or right-click to change acceptable status of solutions in the
graphical views.

You can use these selections to choose solutions within the table for use in:

• “Filling Tables from Optimization Results” on page 7-9
• “Exporting to a Data Set” on page 7-4
• Importing to other optimization starting values: “Import from Output” on page 6-47

Accept status is shown in the following ways:

• CAGE automatically selects the Accept check boxes for solutions where the
algorithm exit flag indicates success (>0). These solutions show a green square icon
next to the check box. Typically constraints are met within tolerance.

• Solutions with a red round icon indicate that the algorithm exit flag does not report
success (<0). Some constraints may not be met.

7 Optimization Analysis

7-2



• Solutions with an orange triangular icon indicate that the algorithm exit flag is zero.
Some constraints may not be met. An exit flag of zero indicates the algorithm failed
because it exceeded limits on the amount of computation allowed (e.g., the algorithm
ran out of iterations or function evaluations). You could decide to accept these
solutions or you could try changing tolerances and optimizing again.

• Solutions where you have altered the check box status show an asterisk.

• Violated constraints are shown by yellow cells with cross icons in the table. You can
control the value used for this highlighting by selecting View > Edit Constraint
Tolerance.

It is possible to have highlighted constraints within green accept status solutions. The
algorithm can report success if constraints are met within tolerance on scaled values.
The constraint display applies a tolerance to raw values, and you can also edit this
tolerance to help you analyze results.

If you are viewing constraints with multiple values and have the view set to Compact,
the cell is yellow if any of the individual values are infeasible.

• You can view the algorithm output flag in a tooltip by hovering the mouse over each
colored accept status icon, or click to select a solution and then you can view the
algorithm Exit flag, Exit message and other details in the Solution Information
table.

The icon and (editable) Accept status check box are also shown at the top right for the
currently selected solution.

For more information on using the graphical views to investigate your results, see
“Viewing Your Optimization Results” on page 7-18.

CAGE has additional graphical tools for analyzing optimizations with more than one
solution. See “Tools for Optimizations with Multiple Solutions” on page 7-51.

Note For help understanding your results, see “Analyzing Point Optimization Output” on
page 7-36 or “Interpreting Sum Optimization Output” on page 7-73.

 Using Optimization Results

7-3



Create Sum Optimization from Point Optimization Output

Many users employ a point optimization to find good initial values for a sum
optimization. To make this workflow easier and faster, you can use a utility to create a
sum optimization from your point optimization output.

From your point optimization output node, select Solution > Create Sum
Optimization.

CAGE creates a new optimization (called Sum_myOptimizationName). The optimization
has these characteristics:

• The objective matches your original optimization but converted to a sum objective.
• The new optimization has identical constraints to your original optimization. Edit or

add to these as usual if desired.
• Your original fixed and free variables are converted to a sum optimization (a single

run with multiple values).

• The new optimization uses only accepted solutions from your original optimization
output (all runs with a selected Accept check box).

• Therefore, the number of accepted solutions you had in the original optimization
determines the number of values within the sum optimization run.

• The free variable initial values and fixed variable values are populated from your
point optimal results (accepted solutions only).

• The fixed variables have a Weights column with every value set to 1.

For modal and multistart optimizations, the create sum optimization function converts
the optimization to a standard single objective optimization (foptcon algorithm). See
“Creating Sum Optimizations from Modal Optimizations” on page 7-60 and “Creating
Sum Optimizations from MultiStart Optimizations” on page 7-65.

Exporting to a Data Set

You can export the optimization output results to new or existing data sets.

Note In an optimization where there is only one solution for each operating point, this is
exported. Use the Accept check boxes to choose a subset of results for export. See
“Choosing Acceptable Solutions” on page 7-2.

7 Optimization Analysis

7-4



Some optimizations produce more than one solution per point, so you can either export
all solutions or select your preferred solutions for export to a data set. See “Tools for
Optimizations with Multiple Solutions” on page 7-51.

To export to a data set:

1 Select Solution > Export to Data Set or use the toolbar button. The Export to
Data Set dialog box appears.

2 If exporting to a New data set (the default), you can edit the name in the edit box.
3 If you want to overwrite or add to an existing data set:

a Click the option button Modify existing.
b Select the desired data set in the list.
c Choose from Action list:

 Using Optimization Results

7-5



• Append adds the data to the chosen data set.
• Overwrite replaces all data in the data set with the new data.

4 By default, the check box Use acceptable solutions only is selected. Optimization
results with selected Accept check boxes will be exported. Clear the Use
acceptable solutions only check box if you want to export all the optimization
results. See “Choosing Acceptable Solutions” on page 7-2.

5 Click OK and the data is exported to the data set.

Export Rules

All fixed and free variables are exported where possible.

No models are exported to the data set. If you want to evaluate a model at the variable
values, add the model to the data set in the Data Sets view.

When appending, the rules are the same as when merging data sets:

• Columns of inputs are appended to columns with names that match in the data set
you are appending to.

• Outputs (models) and any other columns without matching names are not appended.
• The values for any unmatched columns in the data set are set to the set point if

possible, or zero otherwise.

Custom Fill Function Structure
It can be useful to create your own function to fill tables from the results of an
optimization, for example, to implement alternative fill methods, smoothing strategies, or
to customize output.

The input/output structure of a custom fill function resembles that of the MATLAB
interpolation routines INTERP1 and INTERP2. To see the structure of the function it is
best to look at an example:

1 Locate and open the file griddataTableFill.m in the mbctraining folder.
2 Type the following at the command line to open the example:

edit griddataTableFill

There are instructions for using this example in the optimization tutorial, “Using a
Custom Fill Routine to Fill Tables”, in the Getting Started documentation. This

7 Optimization Analysis

7-6



function is an example of a function that will fill 2-D tables from optimization
results.

All 2-D custom fill functions must take the following six inputs, which will be supplied to
it by CAGE when the function is called:
Input Description
col Column coordinate of optimization results (NF-

by-1)
row Row coordinate of optimization results (NF-by-1)
filldata Optimized results at (row, col) points (NF-by-1)
colaxis Column breakpoints of table to be filled (1-by-

NCOL)
rowaxis Row breakpoints of table to be filled (NROW-by-1)
currtabdata Existing table values of table to be filled (NROW-by-

NCOL)

The function must pass three output arguments back to CAGE, to allow CAGE to fill the
table:
Output Description
ok Boolean flag to indicate success of the table fill

(TRUE or FALSE)
tabval New table values of table to be filled (NROW-by-

NCOL)
fillmask Logical matrix to indicate cells to be added to the

extrapolation mask as a consequence of the table
being filled (NROW-by-NCOL)

In the above specifications:

• NF is the number of points from the optimization results that will be used to fill your
tables.

• NCOL is the number of column breakpoints in the table.
• NROW is the number of row breakpoints in the table.

Note that your function should handle the cases when the table fill is successful or not.
In griddataTableFill, this is handled using the try-catch construct around the call to

 Using Optimization Results

7-7



griddata. If griddata should fail, then the ok flag is set to false and the function
returns.

Custom Fill Function for 1–D Tables

You can also write custom fill functions to fill 1–D tables. In this case the input and
output specifications are as follows:
Input Description
row Row coordinate of optimization results (NF-by-1)
filldata Optimized results at (row, col) points (NF-by-1)
rowaxis Row breakpoints of table to be filled (NROW-by-1)
currtabdata Existing table values of table to be filled (NROW-by-1)

Output Description
ok Boolean flag to indicate success of the table fill (TRUE or FALSE)
tabval New table values of table to be filled (NROW-by-1)
fillmask Logical matrix to indicate cells to be added to the extrapolation

mask as a consequence of the table being filled (NROW-by-1)

7 Optimization Analysis

7-8



Filling Tables from Optimization Results
In this section...
“Table Filling from Optimization Results Wizard” on page 7-9
“Table Filling When Optimization Operating Point Inputs Differ from Table Inputs” on
page 7-14
“Filling Tables Via Data Sets” on page 7-16

You can fill tables with optimization results using either a wizard or data sets.

Table Filling from Optimization Results Wizard

In a single objective optimization, there is only one solution for each operating point, so
you can fill tables with your results. In a multiobjective optimization there is more than
one solution per point, and you must first select the preferred solutions before you can
use the Table Filling wizard. To collect your preferred solutions you must use the
“Selected Solution Slice” on page 7-53, then you can use this wizard to fill tables with
the selected solutions. Modal and multistart optimizations also have multiple solutions
per point but CAGE automatically selects solutions for you, so you do not have to select
solutions before table filling.

In the Optimization output view, you can use the Table Filling wizard as follows.

1 At the Optimizationname_Output node, select Solution > Fill Tables, or click

the toolbar button .

The Table Filling wizard appears.

Note If your tables have been filled before, CAGE remembers all your fill settings
between optimization runs and saves the settings with the CAGE project.

2 Select the tables to fill, and click the button to add them to the list of tables to be
filled. Click Next.

 Filling Tables from Optimization Results

7-9



3 Select or change filling factors for the tables.

CAGE automatically populates the filling factors for the tables if you created your
tables using the Create Tables from Model wizard, and left the defaults to add all
your new tables to a tradeoff.

View the Tradeoff column to see if a table is associated with a tradeoff. CAGE does
not populate the fill factor if a table belongs to more than one tradeoff and there are
different fill factors.

Note If you create your tables using the Create Tables from Model wizard, you can
add all your new tables to a tradeoff. The tradeoff can be useful for specifying fill
factors for tables, and for investigating optimization results. See “Creating Tables
from a Model” on page 3-4.

7 Optimization Analysis

7-10



If your tables are not in a tradeoff and you have not filled them before, select filling
factors for your tables as follows:

a Select a CAGE table to be filled in the Table values to be filled list.
b Select the correct variable or model output from the list of Optimization

Results and click the button to match the result to the table.

Your selected filling factor appears in the Fill with column.

Repeat for other tables.

Verify the Normalizer inputs show the correct inputs. You might need to specify
the Normalizer inputs to match with optimization results, if you are filling tables
with different inputs to your optimization operating points. See “Table Filling When
Optimization Operating Point Inputs Differ from Table Inputs” on page 7-14.

Click Next.
4 Select a Fill Method.

• Extrapolate Fill — Uses the optimization results to fill the whole table by
extrapolation.

 Filling Tables from Optimization Results

7-11



• Direct Fill — Fills only those table cells whose breakpoints exactly match the
optimization points.

• Custom Fill — You can write your own table filling algorithm and use the file
browser to select it. See “Custom Fill Function Structure” on page 7-6.

5 Use acceptable solutions only — Leave this check box selected to use only
optimization results marked as 'acceptable'. See “Choosing Acceptable Solutions” on
page 7-2.

6 Update tradeoffs — Select this check box to update tradeoffs with the optimal
values from your optimization. You must update your tradeoff to populate it with
optimization results. If you do not update the tradeoff, table values and tradeoff
values do not match.

For best results, you need a table for each model input (free and fixed, except
normalizer variables) to fill simultaneously from the optimization results. You can
automatically create a tradeoff with all these tables by using the Create Tables from
Model wizard. Evaluation of models in tradeoff uses the variable set points for any
variables that do not have a tradeoff table.

7 Optimization Analysis

7-12



7 Use the two check boxes on the right to incrementally fill tables from the results of
multiple optimizations with smooth interpolation through existing table values.
CAGE can extrapolate the optimization results to pass smoothly through table
masks and locked cells. Use these features when you want to use separate
optimizations to fill different regions of a lookup table.

• Use locked table values in extrapolation— When this check box is selected,
CAGE smoothly fills the table between fixed table values and optimization
results.

If your calibration tables have fixed values for some table cells, use locked cells
for the table cells with fixed values. Such cells often appear on the edge of a table.

• Use existing extrapolation mask in fill— When this check box is selected,
CAGE smoothly fills the table between the values in the mask (from previous
table filling) and the current optimization results.

Select this check box when you want to fill the same table from multiple
optimizations that provide solutions at different operating points. Complex
calibration problems can require different optimizations for different regions of a
table. The toolbox automatically adds filled cells to the table mask.

If you use the wizard to repeatedly fill a table, CAGE adds to any existing
extrapolation mask. As an example, consider filling multiple zones of a table
using results from different optimizations. All zones are cumulatively added to
the mask. If there is overlap with previous fills, cells are overwritten unless they
are locked. Locked cells are never altered by table filling.

8 (Optional) Specify Filter Rules to select part of the optimization results for table
filling. Specify a filter rule with a logical expression using any input or model
available for use in table filling. You can specify an operating mode (for modal
optimizations) or any valid expression as a filter. For an example, see “Filling Tables
for Operating Modes” on page 7-61.

9 Click Finish to fill the tables.

A dialog box shows which tables have been successfully filled. Switch to the Tables
view to examine the tables.

 Filling Tables from Optimization Results

7-13



Table Filling When Optimization Operating Point Inputs Differ from
Table Inputs

For some optimization problems, you want to optimize at operating points in different
variables to the tables you want to fill, and use response models as normalizer inputs to
tables. For example, your problem requires running an optimization at torque and speed
operating points, but you want to fill tables on axes of mainfuel (a response model) and
speed. If all the response model input variables are in your optimization, you can fill
tables with that response model as a normalizer input.

1 Create your tables using the Create Tables from Model wizard, and select a response
model as an input to your tables. For example, using the example project
DieselPointByPoint.cag in the mbctraining folder, create tables from the
MAINFUEL model, and select MAINFUEL as the Y-axis normalizer input, as shown.

7 Optimization Analysis

7-14



You must specify the breakpoints for your model input normalizer. Edit breakpoints
by clicking the button after Table columns, and enter a number of points and the
range to space the breakpoints over. If you do not do this, model inputs are spaced
over 0-1, because CAGE cannot determine the range automatically as happens with
variables. After you create your tables with a model input, in the Variable Dictionary
you can view a new variable named modelname_input with the range you specified.
CAGE uses this input variable to match to model names when you fill tables from
optimization results.

2 When you are ready to fill tables with optimization results, open the Table Filling
from Optimization Results Wizard, select your tables with the response model
normalizer input, e.g., MAINFUEL_norm, and click Next.

3 On the Optimal Result Selection screen, CAGE looks for matches by name among
the variables and response models in the Optimization Results list. Verify the
Normalizer Input column shows the input you want. If CAGE cannot find a match,
the Input column is empty. To select or change an input, select an item in the
Optimization Results list and click the button to select the optimization result for
normalizer input.

 Filling Tables from Optimization Results

7-15



4 Click Next and Finish to fill your tables.

Filling Tables Via Data Sets

The alternative method of filling tables with optimization output uses Data Sets. This
can be useful to see the optimization results and the filled table surface on the same plot.
In Data Sets you can also manually edit the results before filling, and compare results
with external data.

1
From the optimization Output node, click     (Export to Data Set) in the toolbar
(or select Solution > Export to Data Set). The Export to Data Set dialog box
appears. See “Exporting to a Data Set” on page 7-4 for instructions.

2 Go to the Data Sets view (click the Data Sets button in the Data Objects pane) to
see that the table of optimization results is contained in the new data set.

You can now use this data set (or any optimization results) to fill tables, as you can
with any data set.

3 Select the data set and click  (Fill Table from Data Set) in the toolbar.

7 Optimization Analysis

7-16



4 Clear the check box to Show table history after fill.
5 Choose to fill a table with the desired optimization output by selecting them in the

two lists, then click the button Fill Table at the bottom right.
6 Right-click the display and select Surface to see the filled table surface and the

optimization output values.

See also “Fill Tables from Data” for an example showing how to use data sets to fill
tables.

 Filling Tables from Optimization Results

7-17



Viewing Your Optimization Results

In this section...
“Navigating the Optimization Output View” on page 7-18
“Solution Slice: Optimization Results Table” on page 7-20
“Solution Slice: Results Surface and Results Contour Views” on page 7-21
“Objective Slice Graphs” on page 7-26
“Objective Contour Plot” on page 7-27
“Constraint Slice Graphs” on page 7-27
“Constraint Summary Table” on page 7-29

Navigating the Optimization Output View

Use the Optimization Output view toolbar buttons shown in the following figures to
determine what is displayed in the table and the graph views. The first default view is
the Solution Slice table and the Objective Slice Graphs.

Use these toolbar buttons or the View menu to select the following Table Views:

• “Solution Slice: Optimization Results Table” on page 7-20 and “Solution Slice:
Results Surface and Results Contour Views” on page 7-21— See also “Choosing
Acceptable Solutions” on page 7-2

• “Pareto Slice Table View” on page 7-51
• “Weighted Objective Pareto Slice” on page 7-68
• “Selected Solution Slice” on page 7-53

Use these toolbar buttons to select the following Views:

• “Objective Slice Graphs” on page 7-26
• “Objective Contour Plot” on page 7-27
• “Pareto Graphs” on page 7-67

7 Optimization Analysis

7-18



• “Constraint Slice Graphs” on page 7-27
• “Constraint Summary Table” on page 7-29
• Free Variable Values Table — displays the values of the free variables for the

currently selected solution.
• Solution Information Table — displays information about the currently selected

solution, including the Accept status, the algorithm exit flag and exit message, and
other algorithm details such as the number of iterations.

Hover the mouse pointer over the Exit message to see the whole message. This
message can tell you, for example, if an foptcon optimization run terminated
because no feasible start point was found.

You can split and add these views as in the Design, Data and Boundary Editors. Use the
right-click context menu, the View menu, or the buttons in the view title bars to do so.

These toolbar buttons are also in the Solution menu:

• Select solution — Use this option for choosing your preferred solution for each
operating point. See “Tools for Optimizations with Multiple Solutions” on page 7-51.

• Edit pareto weights — This option is used for evaluating weighted sums. See
“Weighted Objective Pareto Slice” on page 7-68.

• Export to data set — This option exports the table visible in the current view only to a
new or existing data set. See “Using Optimization Results” on page 7-2.

• Fill tables using optimal solutions — This option opens the Table Filling From
Optimization Results Wizard. See “Using Optimization Results” on page 7-2.

• The Solution menu also has:

• Create Sum Optimization — see “Create Sum Optimization from Point
Optimization Output” on page 7-4.

• Retain Output (also in the context menu when you right-click an optimization
output node). If you select this option, the output node is retained, so if you rerun
the optimization you get additional output nodes.

Note For help understanding your results, see “Analyzing Point Optimization Output” on
page 7-36 or “Interpreting Sum Optimization Output” on page 7-73.

 Viewing Your Optimization Results

7-19



Solution Slice: Optimization Results Table

The Solution Slice view (click  ) shows a table with one solution at all operating points
and all runs. The solution is shown in both tabular and graphical forms — see “Solution
Slice: Results Surface and Results Contour Views” on page 7-21 for information on the
graphical views.

The following example shows a Solution Slice table display.

CAGE automatically selects successful optimization solutions and highlights
unsuccessful solutions for you to investigate. These selections are shown in the icons and
check boxes next to the Run column in the Optimization Results table. For more
information, see “Choosing Acceptable Solutions” on page 7-2.

7 Optimization Analysis

7-20



The Solution Slice view shows a table of one solution at all operating points and all
runs in the problem. For single-objective optimizations there is only one solution per
operating point, so the Solution Slice is the only useful view.

For optimizations with more than one solution per run (multiobjective and modal), the
solution slice displays controls so you can scroll through the solutions using the arrows or
edit box at the top.

The table shows the selected solution at all operating points. The Optimization Results
pane shows the fixed variable settings, the optimal free variable settings, and the
evaluation of objectives and constraints at the optimal free variable settings.

Click inside the table to make the graph views (objective slice, constraint slice and pareto
front) display the selected operating point.

• The Results Surface or Results Contour view highlights the selected point.
• The “Objective Slice Graphs” on page 7-26 show the objective functions at the

operating point selected in the table, with the solution value in orange.
• If you have constraints you can also choose to display the “Constraint Slice Graphs”

on page 7-27. These show the constraint functions at the selected operating point
with the solution value in orange.

• If you are viewing a multiobjective optimization you can also choose to display the
“Pareto Graphs” on page 7-67, which show the available solutions with the current
selection highlighted in red.

• You can also display the “Constraint Summary Table” on page 7-29, which details
the distance to each constraint edge for the selected operating point in the table. This
table can be useful to see at a glance if a solution met all the constraints. If there are
many constraints it can be time-consuming to use the constraint graphs to verify that
the constraints are met.

Solution Slice: Results Surface and Results Contour Views
• “Contour View of Optimization Results” on page 7-21
• “Surface View of Optimization Results” on page 7-24

Contour View of Optimization Results

The Results Contour view shows a contour plot of one solution at all operating points
and all runs in the problem. Use the axes popup controls to change what is plotted on
each axis. You can plot the following against each other:

 Viewing Your Optimization Results

7-21



• Fixed variable settings
• Optimal free variable settings
• Evaluation of objectives at the optimal free variable settings

The optimization results are plotted as points in the contour plot and extrapolation
contours (of the z-axis quantity as a function of the x and y-axis quantities) are also
displayed.

Each optimization result is displayed using the Accept icon, as shown in the
Optimization Results table:

•  Successful result
•  Failed result
•  Problem result
•

 User-altered accept status.
•

 Currently selected result (black outline). Select results by clicking an icon in the
plot or a value in the table. Changing the currently selected result in the Results
Contour view also updates the result selected in the table, and updates any plots
displayed in the lower half of the output view.

7 Optimization Analysis

7-22



Rotation is not permitted in the contour view.

Use the right-click context menu to control these options:

• Results to Display

• All – Show all optimization results for this solution
• Acceptable – Show only the acceptable results for this solution
• Green – Show the results with a positive exit flag
• Orange – Show the results with a zero exit flag
• Red – Show the results with a negative exit flag

 Viewing Your Optimization Results

7-23



• Set Acceptable — mark an optimization result as acceptable if it is currently
marked as unacceptable.

Any results whose acceptability has been changed are shown as stars in the plot
• Set Unacceptable — mark an optimization result as unacceptable.
• Extrapolate All — toggles extrapolation from acceptable solutions only (default) to

using all results for extrapolation.
• Contour Options

• Label Contour Lines
• Fill Contours
• Contour Levels — These contour options are identical to those for the objective

contour view.
• Show Axes Grid — Toggle whether the axes grid is displayed or not.
• Hide Contour — Toggle whether the contour is hidden or not.
• Display Contour — Toggle whether the contour is displayed or not.

To toggle between contour and surface view, right-click the view and select Current
View. To display both views use the title bar buttons to split the view.

Surface View of Optimization Results

The Results Surface view shows a 3D plot of one solution at all operating points and all
runs in the problem. Use the axes popup controls to change what is plotted on each axis.
You can plot the following against each other:

• Fixed variable settings
• Optimal free variable settings
• Evaluation of objectives at the optimal free variable settings

The optimization results are plotted as points, and an extrapolation surface (of the z-axis
quantity as a function of the x and y-axis quantities) is also displayed. The accept icon for
each result is plotted as for the Results Contour.

7 Optimization Analysis

7-24



Left-click anywhere except an icon to rotate the plot.

The right-click context menu shares these options with the Results Contour view:
Results to Display, Set Acceptable/Unacceptable, and Extrapolate All. Some
additional items for the surface view:

• Surface Options

• Reset Axes Orientation — Reset the axes orientation to the default.
• Show Axes Grid — Toggle whether the axes grid is displayed or not.
• Show Axes Box — Toggle whether the axes box is displayed or not.

 Viewing Your Optimization Results

7-25



• Hide Surface — Toggle whether the surface is visible or not.
• Show Stems — Use this option to additionally display stems projected from the

data to the surface. These stems can be useful to show the location of results that
are not used in the extrapolation and are hidden by the surface.

Objective Slice Graphs

The objective slice graphs are displayed by default for optimization output views, or you
can select in the toolbar.

The objective slice graphs show the objective functions at the point selected in the table,
with the solution value in orange. Whether the table is displaying a solution slice or
pareto slice, the cell you select in the table is always displayed in the graphs. The
objective graphs show cross section plots of the objective function against each free
variable in the problem.

The yellow areas show a region outside a constraint tolerance (such as a boundary
constraint exported from the Model Browser part of the Model-Based Calibration Toolbox
product, or any other optimization constraint). All constraint regions in optimization
displays (as in the rest of the toolbox) are shown in yellow.

Use the right-click context menu to toggle constraint display and alter graph size.

7 Optimization Analysis

7-26



Objective Contour Plot

The Objective Contour Plot (click ) shows the contours of the objective against any
pair of control parameters, at the run selected in the table, with the solution value at the
center of the orange cross-hairs. Yellow areas show a region outside a constraint
tolerance (see the following figure). This view can be useful for exploring objective
functions—a visual way to help avoid local minima.

Select parameters to plot in the drop-down lists, and if you have more than one objective
you can select from the Objective drop-down list.

Use the right-click context menu to toggle constraint display, contour labels, fill contours,
and colorbar, and control other options such as number and placing of contour levels.

Constraint Slice Graphs

The Constraint Slice graphs (click ) show the constraint functions at the selected
operating point with the solution value in orange. Click inside the tables to select
solutions to display. Yellow areas on the graphs show a region outside a constraint
tolerance, as shown in the following figure.

 Viewing Your Optimization Results

7-27



This example shows the constraint EXTEMP ≤ 1290° C.

The constraint graphs (the blue lines) show how the Left Value of each output of a
constraint (in this case, the EXTEMP model) depends on the free variables in the
optimization (in this case S, EXH and INT). The Left Value is compared with a plot of the
Right Value output (in this case, 1290° C) on the same axes.

The red horizontal line denotes the Right Value (i.e., the upper bound on EXTEMP) which
in this case is 1290° C). Because this value is an upper bound, the yellow region above
the red line shows where the constraint is infeasible. Yellow is shown above the Right
Value plus the tolerance — on many graphs the distance is too small to see between the
red line and the tolerance line where the yellow begins. By default, this tolerance is
taken from the optimization constraint tolerance. You can control the value used for this
highlighting by selecting View > Edit Constraint Tolerance.

The vertical orange lines show the optimal values of the free variables; the intersection of
these with the blue lines is marked with a blue triangle on the Constraint1 axis—this
intersection is the Left Value (1290° C) at the optimal settings. These are the Left and
Right values in the Constraint Summary table for Constraint1. See “Constraint
Summary Table” on page 7-29.

Note Use the right-click context menu to alter graph size.

7 Optimization Analysis

7-28



If a constraint is violated at the solution value, the Y axis is highlighted in yellow, as
shown in Constraint 2 in the following example. If constraint values are greater than the
tolerance, the row is highlighted in yellow. By default, this tolerance is taken from the
optimization constraint tolerance. You can control the value used for this highlighting by
selecting View > Edit Constraint Tolerance.

See also “Range Constraint Output” on page 7-30 for an explanation of range constraint
graphs, and “Constraint Graphs” on page 7-76 for specific sum optimization features,
such as a table gradient constraints.

Constraint Summary Table

The Constraint Summary Table (click ) view displays the constraint values for the
selected solution in the table. This view can be useful to see at a glance if a solution met
all the constraints. If there are many constraints it can be time-consuming to use the
constraint graphs for verification. If you are using equality constraints or tight table
gradient constraints, the graphs can appear entirely yellow and you can only see whether
a feasible solution has been found by looking at the Constraint Summary Table, shown in
the following figure.

 Viewing Your Optimization Results

7-29



Constraint values greater than the tolerance appear in bold, and the row is highlighted
in yellow. By default, this tolerance is taken from the optimization constraint tolerance.
You can control the value used for this highlighting by selecting View > Edit
Constraint Tolerance. These results should be checked as they may show the
optimization failed to find a solution within the constraint, or they may be within
tolerance (very close to zero). Constraint values less than zero are within the constraint.

Constraints are evaluated as inequalities, e.g., the first constraint, RESIDFRACatMBT,
as shown in the preceding figure, is RESIDFRACatMBT ≤ 25%. The Left Value shows
the left side of the inequality at the optimal settings of the free variables (in this case,
the output of the residual fraction model (RESIDFRACatMBT), which is 21.652). The
Right Value shows the right side of the inequality (in this case, the upper bound, 25%).
The constraint value is the difference between the Left and Right values, and the
distance to the constraint edge.

In this case, the second constraint, MBT_Boundary, is violated, so the row is yellow, and
the positive Constraint Value is highlighted in bold.

For additional information on working with constraints, see the following topics:

• “Range Constraint Output” on page 7-30 for an explanation of range constraints in
the summary table.

• “Constraint Summary” on page 7-77 for specific sum optimization features, such as
table gradient constraint outputs.

Range Constraint Output

The range constraint output is best explained using an example problem.

Control parameters or free variables: S, EXH, INT

Fixed variables: N, L

Objective: Maximize TQ(S, EXH, INT, N, L) at the fixed values shown in the following
table.

7 Optimization Analysis

7-30



Run N L
1 3000 0.5
2 4000 0.6
Constraint: Restrict S between an upper and lower bound shown in the following table.
Run N L Min S Max S
1 3000 0.5 20 30
2 4000 0.6 30 40

When the optimization is run the optimizer returns the following optimal values of S,
EXH and INT, as the following table shows.
Run N L Optimal S Optimal EXH Optimal INT
1 3000 0.5 21.33 8.593 29.839
2 4000 0.6 30 5 7.767
Range constraints implement the following expression:

Lower Bound (LB) ≤ Expression ≤ Upper Bound (UB)

In CAGE, this expression is implemented as two upper-bound constraints, namely:
RangeConLeft

RangeConLeft

Expression

Expression

( )

( )

1

2

È

Î
Í

˘

˚
˙ =

-ÈÈ

Î
Í

˘

˚
˙ £

-È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

LB

UB

RangeConRight

RangeConRight

( )

( )

1

2

A range constraint returns two values at each operating point within a run, as shown in
the following expression:

RangeConOut

RangeConOut

Expression LB

Expressio

( )

( )

1

2

È

Î
Í

˘

˚
˙ =

- +

nn UB-

È

Î
Í

˘

˚
˙

The two values that the range constraint returns are the distance from the lower bound,
RangeConOut(1), and the distance from the upper bound, RangeConOut(2), respectively.

The constraint in the example problem is

LB(N,L) ≤ S ≤ UB(N,L)

CAGE implements this constraint as
-È

Î
Í

˘

˚
˙ £

-È

Î
Í

˘

˚
˙

S

S

LB N L

UB N L

( , )

( , )

and returns the following two values at each operating point within a run to the
optimizer (in this point example there is only one point per run):

 Viewing Your Optimization Results

7-31



RangeConOut

RangeConOut

S LB N L

S UB N L

( )

( )

( , )

( , )

1

2

È

Î
Í

˘

˚
˙ =

- +

-

È

Î
Í

˘

˚̊
˙

The Optimization Results pane shows the fixed variable settings, the optimal free
variable settings, and the evaluation of objectives and constraints at the optimal free
variable settings. In this example, the output of the range constraint at the optimal free
variable settings is shown in the Constraint1 column. For each operating point in a run,
two values are returned from the range constraint.

Looking at the first run:

Optimal S value = 21.33°

To calculate the distances returned from the range constraint:

Distance from lower bound: RangeConOut(1) = –21.33°+20° = –1.33°

Distance from upper bound: RangeConOut(2) = 21.33°–30° = –8.67°

These are the values shown in the Constraint1 column. Remember that negative
constraint values mean that the constraint is feasible. The same values appear in the
Constraint Summary Table for the selected run, in the Constraint Value column, as
shown in the following figure.

The Constraint Value gives a measure of the distance to the constraint boundary for
each constraint output. If the Left Value > Right Value and greater than the tolerance for
any of the constraint outputs, the constraint value is bold and the row is highlighted
yellow. By default this tolerance is taken from the optimization constraint tolerance. You
can control the value used for this highlighting by selecting View > Edit Constraint

7 Optimization Analysis

7-32



Tolerance. This means that this constraint distance should be checked to see if the
constraint is feasible at that point.

The Objective Graphs show cross-section plots of the objective function against each free
variable in the problem. The left plot is a plot of the objective function against S, with
EXH and INT at their optimal values, for the second run. The range constraint for the
second operating point (30 ≤ S ≤ 40) can be seen; within the constraint region is white,
and all other regions outside the constraint are yellow.

 Viewing Your Optimization Results

7-33



The constraint graphs for a range constraint shows how the Left Value of each output of
a range constraint depends on the free variables in the optimization. The Left Value is
compared with a plot of the Right Value output on the same axes. This comparison is
illustrated for the example problem at the second run, as shown in the top left graph.

Constraint1(1) is the first Left Value of the range constraint, RangeConLeft(1), for the
first run in the example problem. The top-left graph shows a blue line, which is a plot of
RangeConLeft(1) against S (the constrained variable) with all other free variables set to
their optimal values. The red horizontal line denotes the Right Value (RangeConRight(1),
i.e., the upper bound on S) which in this case is -20°. Because this value is an upper
bound, the yellow region above the red line shows where the table gradient constraint is
infeasible. The vertical orange line shows the optimal value of S; the intersection of this
line with the blue line is marked with a blue triangle on the Constraint1(1) axis—the
triangle marks the Left Value (-21.3°) at the optimal settings. These are the Left and
Right values in the Constraint Summary table for Constraint1(1).

Constraint1(2) is the second Left Value of the range constraint, RangeConLeft(2), for
the first run in the example problem. The bottom left graph shows a blue line plot of
RangeConLeft(2) against S with all other free variables set to their optimal values. The
horizontal red line denotes the Right Value (RangeConRight(2) ) which in this case is 30°.
Because this value is an upper bound, the yellow region above the red line denotes where
the table gradient constraint is infeasible. The vertical orange line shows the optimal
value of S; the intersection of this with the blue line is marked with a blue triangle on the
Constraint1(2) axis—the triangle marks the Left Value (21.3°) at the optimal settings.
These are the Left and Right values in the Constraint Summary table for Constraint1(2).

7 Optimization Analysis

7-34



In this example, the range constraint does not depend on EXH or INT, so the constraint
graphs against these variables are blank.

 Viewing Your Optimization Results

7-35



Analyzing Point Optimization Output
In this section...
“Process for Analyzing Optimization Results” on page 7-36
“Detecting Local Optima” on page 7-38
“Investigating Early Termination of Optimization” on page 7-42
“Handling Flat Optima” on page 7-47

Process for Analyzing Optimization Results
This topic describes a process for analyzing the results from single-objective
optimizations (e.g., maximizing torque vs. spark, ICP, ECP at an engine operating point,
using foptcon, ga and patternsearch algorithms).

For each run of an optimization, the aim is to find the optimal solution. The Optimization
Output View provides graphical tools to help you determine whether an optimal solution
has been found for a given run. This view provides a table with icons that indicate the
status of each optimization run.
Optimization Results Table Icons

Icon Description
Green square Accept icon Indicates success (algorithm exit flag > 0 ).

Orange triangle Accept icon Indicates the optimization terminated early
(exit flag = 0 ). This situation typically
occurs when the optimizer has reached
some form of time limit. Examples of this
include exceeding a number of iterations or
function evaluation limit. In such cases, the
optimization was in progress but was
forced to terminate before the optimal
solution had been found.

Red circle Accept icon Indicates failure (an exit flag < 0 ).
Typically this occurs due to the problem
being over constrained for this run.

The process for analyzing point optimization results comprises the following tasks:

7 Optimization Analysis

7-36



• “Analyzing Output for All Runs” on page 7-37
• “Adjusting Settings To Improve Results” on page 7-37

Analyzing Output for All Runs

1 Switch to the Optimization Output view for the optimization.
2 Analyze all runs with green square Accept icons ( ). For each run:

a Inspect the Objective Graphs.
b Inspect Objective Contour plots for as many pairs of free variables as possible.

You can configure the optimization output view to display multiple contour plots
simultaneously.

Has the solution found a local optimum? Many optimization algorithms are designed
to locate local optima (e.g., foptcon in CAGE). Check each successful run to ensure
that the optimizer has found the best solution possible. See “Detecting Local Optima”
on page 7-38 for more information and examples.

Does the optimization appear to have terminated early? In some cases an
optimization appears to return sub-optimal results even though the optimizer has
returned a positive exit flag. Investigate such cases. See “Investigating Early
Termination of Optimization” on page 7-42.

3 Repeat steps 2a and 2b to analyze all runs with orange triangle Accept icons
( ) that indicate the optimization terminated early. See “Investigating Early
Termination of Optimization” on page 7-42 for more information and examples.

4 Repeat steps 2a and 2b to analyze all runs with red circle Accept icons ( )
that indicate failures. These runs have typically failed to meet constraints. Inspect
the plots and determine if it is acceptable to relax any of the constraints.

Adjusting Settings To Improve Results

After you investigate your results to identify problems, use these suggestions to try to
improve your optimization results:

1 If you detect local optima, try running the optimization again to locate the best
optimum.

• Edit the initial condition manually for this optimization operating point and
rerun.

 Analyzing Point Optimization Output

7-37



• For point optimizations that use the foptcon algorithm, set the Number of
start points to be greater than 1 and rerun. In this case, CAGE performs the
optimization more than once for each run. To save time, you might want to only
repeat the offending runs in this way.

• Use an alternative algorithm on the runs that have found a local optimum. For
example, you could try the ga or patternsearch algorithms in CAGE (if you
tried the foptcon algorithm first).

2 If the optimization terminates early:

• In cases where the optimizer runs out of iterations/function evaluations/time and
the solution returned is feasible, determine whether the solution is acceptable to
you.

• To accept the solution, select the Accept check box on the Optimization
Results table.

• If you reject the solution, rerun the optimization with modified parameter
settings. In this case, if foptcon or patternsearch is being used, it is
advisable to start the optimizer from the solution that has just been found.

• In cases where the optimizer runs out of iterations/function evaluations/time and
the solution returned is infeasible, you can try rerunning the optimization from
different initial conditions (for foptcon or patternsearch ) or different
parameter settings (all algorithms). If this approach does not resolve the problem,
determine if any constraint has been violated. Investigate violated constraints, to
determine whether they can be relaxed. If they can, rerun the optimization with
the relaxed constraints; if not, leave the check box unselected to indicate the
solution is unacceptable.

3 See also “Handling Flat Optima” on page 7-47.

Detecting Local Optima

The following figure shows views for an optimization which has found the optimal
solution. The objective is to maximize Torque (Objective1) against spark angle (S),
Exhaust valve closing (ECP) and Intake valve opening (ICP).

7 Optimization Analysis

7-38



When you analyze the optimization results, look for results that have located the best
optimum against the free variables.

In this case, an individual plot can only show it is highly likely rather than definitely the
optimal value because there are more than two free variables. For problems with more
than two free variables, the Objective Graphs and Contours views cannot guarantee that
an optimal solution has been found because they provide projections of the model.

For further confirmation, you should inspect the Objective Contour view for as many
pairs of free variables as you have time to analyze.

The following example shows the algorithm has found a local maximum (marked by the
orange cross). You can see the global maximum for this optimization in the lower-right
corner of the contour plot.

A constraint, such as a table gradient constraint, could cause a local maximum result.
This result could be desirable, however, because it may be preferable for table

 Analyzing Point Optimization Output

7-39



smoothness to find a local maximum with a slight loss of torque compared to the global
maximum (in this case, about 1.3 NM of torque (1%) which is within model accuracy).

To inspect contour plots for many pairs of free variables, you can configure the
optimization output view to display multiple contour plots simultaneously. Simultaneous
display can help locate those runs that have converged to a local optimum.

The following figure simultaneously shows contour plots for all pairs of free variables for
the gasoline case study.

7 Optimization Analysis

7-40



 Analyzing Point Optimization Output

7-41



Investigating Early Termination of Optimization

Inspect the Objective Graphs and Contour Views to check for optimizations that have
terminated early. Early termination typically occurs with runs that have warning orange
triangle Accept icons, but can also occur when the optimizer has returned a successful
green square Accept icon.

The following figure shows an optimization run with a warning orange triangle Accept
icon that has been forced to terminate because it exceeded the iterations limit.

In this case, the optimizer has almost found the optimal solution for this run. If this
optimizer has taken a long time to run, then as this solution is almost optimal it is
probably worth marking as acceptable (select the Accept box in the Optimization
Results table for this run).

The following figure shows another example where an optimization terminated early
because it exceeded the iterations limit.

7 Optimization Analysis

7-42



In this case, the problem appears to be over constrained because the plots are entirely
shaded yellow. You can check the constraint summary table or the output table to
identify if constraints are met. Also inspect the constraint summary and constraint
graphs.

Note Solutions on the constraint boundary and table gradient constraints often cause all
objective and contour plots to be yellow (see “Table Gradient Constraint Output” on page
7-78).

The constraint graphs for this case are shown in the following figure.

 Analyzing Point Optimization Output

7-43



These constraint views confirm that Constraint2 is violated for this run. Therefore,
this solution is probably best left as unacceptable. In cases like this, if it is not already
marked as unacceptable, clear the Accept box in the Optimization Results table for this
run.

The following figure shows an optimization that appears to have terminated early
despite returning a positive exit flag. You can see that the optimizer has not located the
maximum. You should investigate cases like this.

7 Optimization Analysis

7-44



There are many reasons why an optimization appears to terminate early. Two common
causes and possible resolutions are discussed in this section.

Poor algorithm parameter settings

Foptcon may not return a local optimum if the following parameter values are too high:

• Variable tolerance
• Function tolerance
• Constraint tolerance

In this case try reducing the values of these parameters to improve performance.
However, do not reduce these parameter values too low (less than ~10-10) to avoid
internal issues with foptcon. Models that have nonphysical nonlinearity can also cause
failure.

 Analyzing Point Optimization Output

7-45



Some nongradient-based algorithms may not return an optimum solution. An example of
this is the genetic algorithm (ga) optimization in CAGE. A poor choice of parameters for
such algorithms can lead to early termination of the optimization. For example, setting
the Crossover Fraction parameter of the ga algorithm to 1 can lead to a situation
where the algorithm prematurely converges. In this case, try rerunning the optimization
at alternative parameter settings. For best results, rerun the algorithm with a Crossover
Fraction lower than 1 (the default is 0.8).

Using foptcon with noisy models

Optimizations can terminate early because the models are noisy and you used a gradient
based algorithm (foptcon) to solve the optimization problem.

If the contour plots or any results are suspicious you should always investigate model
trends to check if they are sensible and not overfitting. Examine models in the CAGE
Surface Viewer or the Model Browser response surface view. You may need to remodel.

To check whether your model is noisy, zoom in on a line plot of the model in the CAGE
Surface viewer. Following is a plot of Objective1 against x around the value of x returned
by the optimizer.

7 Optimization Analysis

7-46



You can see that the model is noisy and the optimizer has (correctly) returned a local
maximum of the model. However, this result is a maximum of the noise component in the
model and not the physical component. If the noise is not behavior of the physical system,
then you should remodel the noisy models in the Model Browser. The CAGE Import tool
can be used to replace the noisy models with the results of the remodeling and the
optimization can be rerun.

Handling Flat Optima

Functions that are flat in the vicinity of their optima can be difficult to optimize. The

following figure shows an example of such a function, g x y x y xy( , ) ( )= + +
2 2 4

, and its
surface plot.

 Analyzing Point Optimization Output

7-47



This function has a global minimum at (0, 0) and is very flat in the vicinity of the optimal
solution.

Using the foptcon algorithm in CAGE to find the minimum of this function (from initial

conditions of ( , ) [ . , . ]x y = 0 5 0 5  ) produces the result shown in the following figure. The

optimizer finds a solution at ( , ) [ . , . ]x y = - -0 113 0 113 , which is not optimal. In the
following plots, you can clearly see that the optimizer has not located the minimum at (0,
0).

7 Optimization Analysis

7-48



To adjust the optimizer to find the minimum, you can take one of several approaches:

• Change the initial conditions.

For a gradient-based algorithm (foptcon in CAGE), changing the initial conditions
can help the optimizer locate a minimum where the objective function is flat in the
vicinity of the minimum. In the example shown in the previous figure, changing the
initial conditions to (x,y) = (1,1) leads to foptcon finding the minimum at (0, 0).

• Rescale the objective function.

Rescale the objective function with an operation that does not change the location of
any optimal solutions, e.g., try taking a square root, fourth root or log, or multiplying
by a positive scalar. Check that the position of the optimum is not changed. When an
objective function is flat in the vicinity of an optimum, rescaling the objective function
can help gradient-based optimization algorithms such as foptcon in CAGE. In the
example shown in the previous figure, when foptcon in CAGE is used to minimize

10
12

g x y( , ) , the minimum at (0, 0) is located.
• Use a non-gradient based algorithm.

 Analyzing Point Optimization Output

7-49



Try either the pattern search or genetic algorithm options. As these algorithms do not
use gradient information, they can perform better when used on optimization
problems with flat minima. In the example shown in the previous figure, the pattern
search algorithm in CAGE located the minimum using the default settings.

• Run the optimization from several initial condition values.

If you are using foptcon then another possible workaround is to set the Number of
Start Points parameter to be greater than 1. This setting runs foptcon the specified
number of times from different start conditions. Use this option only for the affected
runs as it can be time consuming.

• Change tolerances.

For a gradient-based algorithm (foptcon in CAGE), changing the variable or
function tolerances can help the optimizer locate a minimum where the objective
function is flat in the vicinity of the minimum. Reducing the variable and function
tolerances may improve the convergence to the optimum value in this case.

7 Optimization Analysis

7-50



Tools for Optimizations with Multiple Solutions
In this section...
“Analyzing Modal, MultiStart, and Multiobjective Optimizations” on page 7-51
“Pareto Slice Table View” on page 7-51
“Selected Solution Slice” on page 7-53
“Exporting Selected Solutions” on page 7-55

Analyzing Modal, MultiStart, and Multiobjective Optimizations

CAGE has additional tools for analyzing optimizations with more than one solution for
each operating point. Optimizations with multiple solutions are multiobjective
optimizations, modal optimizations and multistart optimizations. Use the optimization
output node tools to view all solutions and select solutions. The tools for viewing and
selecting solutions are described in the following sections:

• “Pareto Slice Table View” on page 7-51 shows a table of all solutions at one run.
• “Selected Solution Slice” on page 7-53 is for collecting and exporting only the

solutions you have decided are optimal at each run.

You can export selected solutions or all solutions to a data set, and you can restrict
export to acceptable solutions only. See “Exporting Selected Solutions” on page 7-55.

• Check the messages and exit flags for each solution, shown in the Optimization
Results table and the Solution Information pane.

• For advice on multiobjective optimizations, see “Analyzing Multiobjective
Optimization Results” on page 7-67 .

• For advice on modal optimizations, see “Analyzing Modal Optimization Results” on
page 7-57.

• For advice on multistart optimizations, see “Analyzing MultiStart Optimization
Results” on page 7-63.

Pareto Slice Table View

The Pareto Slice table view (click ) is for optimizations where there is more than one
solution at each run (multiobjective, multistart or modal). The Pareto Slice shows a table

 Tools for Optimizations with Multiple Solutions

7-51



of all solutions at one run; you can scroll through the runs using the arrows or edit box at
the top.

To collect best solutions across different runs, you need to select a solution for each run,
and your selections are stored in the Selected Solution slice.

To select a solution for each run:

1 Decide which solution you want to use for the currently selected run. Use these tools
to help you:

• Use the Pareto Slice table and Results contour and surface views along with the
“Objective Slice Graphs” on page 7-26 to select the best solution for the run. If you
have constraints you can also use the “Constraint Slice Graphs” on page 7-27 and
“Constraint Summary Table” on page 7-29 to help you decide which solution to
choose for each run.

• For multiobjective optimizations, display the “Pareto Graphs” on page 7-67
(click   in the toolbar) which shows the available solutions with the current
selection highlighted in red.

• For modal optimizations, see “Analyzing Modal Optimization Results” on page 7-
57.

2 When you have decided which solution you want to use for the currently selected
run, you can select it as best by editing the Selected solution control above the

table, or by clicking Select Solution (  ) in the toolbar. You can also select best
solutions with the toolbar in the Solution Slice view, see “Solution Slice:
Optimization Results Table” on page 7-20 .

3 Scroll through the runs and select a best solution for each. These selections are
collected in the Selected Solutions Slice, where you can view them, use them to fill
tables, or export to a data set. You can also import them to an optimization. See
“Selected Solution Slice” on page 7-53.

Before you run an NBI optimization you can specify how many solutions you want the
optimization to find, using the Set Up and Run Optimization toolbar button.

7 Optimization Analysis

7-52



As in the other table views, you can use the Accept check boxes to choose a selection of
rows within the table. In this table view, you can only use this to select solutions within a
single run. Each different solution has a check box and colored icon for “Acceptable”
status. You can override these selections using the check boxes if you want to choose
solutions within a run, for use when exporting to a data set, importing to other
optimizations, or for future reference. See “Choosing Acceptable Solutions” on page 7-2.

Selected Solution Slice
In a multiobjective, modal or multistart optimization, there is more than one possible
optimal solution at each run. You can use the Selected Solution view to collect, view,
and export those solutions you have decided are optimal at each run.

Click Selected Solution in the toolbar  to view the Selected Solution view.

CAGE selects solutions depending on the type of optimization as follows:

• Modal optimizations and MultiStart optimizations select a solution for each run
automatically that you can view and change manually if you want.

• For multiobjective optimizations you must choose solutions manually to decide the
acceptable tradeoff between the competing objectives.

Note You can use the Selected Solution slice, or alternatively you can choose to export all
solutions to a data set. See “Exporting Selected Solutions” on page 7-55

 Tools for Optimizations with Multiple Solutions

7-53



You can use the plots and table views to help you select best solutions for each run.
These solutions are saved in the Selected Solution view. You can then export your
chosen optimization output for each point from the Selected Solution view to a data
set, or use your optimization output to fill tables or import to another optimization.

1 If you want you can initialize the Selected Solutions view with a particular solution
for all runs. Select Solution > Selected Solution > Initialize.

The Create Selected Solution dialog box appears.

The default 1 initializes the first solution for each run as the selected solution. You
can edit the solution number here if you want. For example, if you select 4, solution
number 4 is initialized as the best solution for every run. Click OK.

2 Use the table views and the plots in the graphs (Objective Slice, Pareto Front, and
Constraint Slice graphs) to help you select the best solution for each run. Use the
procedure described in “Pareto Slice Table View” on page 7-51 to select a solution for
each run. Repeat until you have selected solutions for all runs.

3 You can also change selected solution in the Selected Solution slice view, by editing
the Selected solution control above the table. You should use the Pareto Slice table
and other views to investigate all solutions.

These solutions are saved in the Selected Solutions view. This view collects all your
selected solutions together in one place. For example, you might want to select solution 7
for the first run, and solution 6 for the second, and so on. You can then use your chosen
optimization output for each point to fill tables (see “Filling Tables from Optimization

Results” on page 7-9), or choose the Export to Data Set  toolbar and Solution menu
option (see “Exporting to a Data Set” on page 7-4), or use these solutions as starting
points in another optimization (see “Import from Output” on page 6-47).

An example of the Selected Solutions view is shown. It looks similar to the Solution
Slice view, except the Selected solution controls at the top are enabled instead of the
Current solution. You can change the selected solution in this view. The solution
chosen as best (in this or other views) for the currently selected run is displayed in both
current and selected solution edit boxes.

7 Optimization Analysis

7-54



As in the other table views you can use the Accept check boxes to choose a selection of
rows within the table. See “Choosing Acceptable Solutions” on page 7-2.

Exporting Selected Solutions

For optimizations with multiple solutions (multiobjective, modal and multistart), you can
choose to export only selected solutions or all solutions to a data set. You can restrict
export to acceptable solutions only (specified by the Accept check boxes). See “Choosing
Acceptable Solutions” on page 7-2. You can use the Selected Solution slice to collect only
the best solution for each run.

1 Select Solution > Export to Data Set or use the toolbar button. The Export to
Data Set dialog box appears. For optimizations with multiple solutions this dialog
provides an additional control called Solutions to Export.

2 Use the Solutions to Export drop-down list to select either:

• Selected Solutions — this exports your collected solutions in the Selected
Solution Slice.

• All Solutions — this exports every solution from every run.
• You can choose whether to export acceptable solutions only with the check box

Use acceptable solutions only.

 Tools for Optimizations with Multiple Solutions

7-55



For more information on exporting optimization results, see “Exporting to a Data Set” on
page 7-4.

See Also

Related Examples
• “Analyzing Modal Optimization Results” on page 7-57
• “Analyzing MultiStart Optimization Results” on page 7-63
• “Analyzing Multiobjective Optimization Results” on page 7-67

7 Optimization Analysis

7-56



Analyzing Modal Optimization Results
In this section...
“Viewing and Selecting Modal Optimization Results” on page 7-57
“Creating Sum Optimizations from Modal Optimizations” on page 7-60
“Filling Tables for Operating Modes” on page 7-61

Viewing and Selecting Modal Optimization Results

After you run your modal optimization, use the optimization output node to verify the
results. For general advice see “Analyzing Point Optimization Output” on page 7-36. The
following process describes features specific to the results of modal optimizations.

Modal optimization results have more than one solution at each operating point. The
modal optimization algorithm tries to automatically select the best mode for each
operating point.

Use the optimization output node tools to view all solutions, see which solution is
selected, and change the selections manually if you want. These features are also useful
for selecting solutions for multiple objective optimizations (using the NBI algorithm) and
multiple start points (using the MultiStart algorithm) that also have more than one
solution per point.

1 Use the Solution Slice view to see all the results for a single mode at a time. In the
Solution Slice table view, use the Current solution controls to change which mode
results to display.

The default view in the GasolineComposite.cag example shows all the solutions
for CylinderMode 1, the 4 cylinder mode. Set the Current solution to 2 to view
solutions for CylinderMode 2(8 cylinder mode).

In the example shown following the table and contour plot shows the results for
CylinderMode 2(8 cylinder mode) at every operating point.

 Analyzing Modal Optimization Results

7-57



2 To see which mode is selected as best for all operating points in one view, switch to
the Selected Solution view. Select View > Selected Solution or use the toolbar
button. The table and contour plot display the selected best solution for all operating
points.

7 Optimization Analysis

7-58



3 In the Selected Solution view, review the Results Contour plot to see which mode has
been selected across all operating points. Use this view to verify the distribution of
mode selection.

4 If you have extra objectives, you can also view them in the tables and plots. Use the
other objectives to explore the results. For example you may want to manually
change the selected mode based on an extra objective value. If you have extra
objectives it can be useful to view plots of the other objective values at your selected
solutions. To display another plot simultaneously, right-click the Results Contour
title bar and select Split View.

5 Click to select a point in the table or Results Contour, and you can use the Selected
solution controls (or the toolbar button) to alter which mode is selected at that
point. You may want to change selected mode if another mode is also feasible at that
point. For example, you can change the mode if you want to make the table more
smooth.

 Analyzing Modal Optimization Results

7-59



In the GasolineComposite.cag example, some operating points can be run in
either 4– or 8–cylinder mode. When both modes are feasible, the modal optimization
algorithm selects the mode that results in the best torque.

6 Use the Pareto Slice view to see all the solutions for a particular operating point.
You can inspect the objective value (and any extra objective values) for each solution.
If needed, you can manually change the selected mode to meet other criteria, such as
the mode in adjacent operating points, or the value of an extra objective. Change the
selected solution using the Selected solution control or by selecting the solution
and using the toolbar.

7 If you change the selected mode for a point, return to the Selected Solution view to
observe the selected solutions for all operating points.

8 Check the messages and exit flags for each solution, shown in the Optimization
Results table (hover over the Accept icons) and the Solution Information pane. Modal
optimizations provide exit messages from fmincon and prefix the message with the
mode number for the solution. See the fmincon function for exit messages. There is
also an exit message specific to modal optimization: -7 which reports that the mode
is not valid (NaN) for a particular operating point.

Creating Sum Optimizations from Modal Optimizations
When you are satisfied with all selected solutions for your modal optimization you can
make a sum optimization over all operating points. The mode must be fixed in the sum
optimization to avoid optimizing a very large number of combinations of operating
modes. For example, the GasolineComposite.cag example optimization has
2x57=114 different combinations of modes.

To create a sum optimization from your point modal optimization:

1 From your point optimization output node, select Solution > Create Sum
Optimization.

The toolbox automatically creates a sum optimization for you with your selected best
mode for each operating point. The create sum optimization function converts the
modal optimization to a standard single objective optimization (foptcon algorithm)
and changes the Mode Variable to a fixed variable.

2 You can then add table gradient constraints to ensure smooth control and engine
response.

See also “Create Sum Optimization from Point Optimization Output” on page 7-4.

7 Optimization Analysis

7-60



Filling Tables for Operating Modes
Composite models can require the ability to select part of the optimization results to fill a
particular table. For example, you need to discard solutions for other modes when filling
a table with an input that is not used for all modes.

You can apply filter rules to select part of the optimization results for table filling. The
filter rules are important for modal optimizations. You can specify an operating mode or
any valid expression as a filter when using the Table Filling wizard.

• Use filter rules when your goal is to fill a different table for each mode.
• Specify a filter rule with a logical expression using any input or model available for

use in table filling.
• The Table Filling from Optimization Results wizard automatically sets up filter rules

for you if some inputs are not used for all modes in your composite model.

From any type of optimization you can use the Table Filling From Optimization Results
Wizard. The example project CompositeWith2Tables.cag shows the use of filter rules
in the wizard to specify results from a single mode to fill a specified table.

In this example project:

• There is a single table for each control variable which stores the value for the best
mode. The strategy has separate tables for each mode.

Composite calibration problems of this kind often involve separate optimizations
(point and sum) with different free variables and constraints for each mode.

• There is a separate point optimization for each mode. The results from each mode are
exported to the same data set (using the append option). The sum optimization uses
the point results data set.

• To finish off the calibration, the sum optimization provides results for a multimodal
drive cycle, using the selected mode at each point.

To see the example:

1 Load the example project CompositeWith2Tables.cag found in matlab\toolbox
\mbc\mbctraining.

2 View completed examples of composite models, optimizations and filled tables.
3 To see the table filling filter rules, expand the Sum_BTQ_Optimization node to

view the optimization output node.

 Analyzing Modal Optimization Results

7-61



4 Select Solution > Fill Tables or use the toolbar button.

The Table Filling From Optimization Results Wizard appears.
5 Click Next to review the saved settings in the wizard.
6 On the final screen of the wizard, you can view filter rules. These rules specify which

mode to use to fill each table.

For more information on the Table Filling Wizard, see “Filling Tables from Optimization
Results” on page 7-9.

7 Optimization Analysis

7-62



Analyzing MultiStart Optimization Results

In this section...
“Viewing and Selecting MultiStart Results” on page 7-63
“Creating Sum Optimizations from MultiStart Optimizations” on page 7-65

Viewing and Selecting MultiStart Results

After you run your optimization, use the optimization output node to verify the results.
For general advice, see “Analyzing Point Optimization Output” on page 7-36. The
following process describes features specific to the results of MultiStart optimizations.

Optimizations using the MultiStart algorithm have multiple start points and try to
find multiple solutions per point. CAGE selects the best solution based on the objective
value. You can investigate all solutions and change selected solutions manually if you
want, for example to make smoother tables.

To examine MultiStart optimization results:

1
Click the Selected Solution button  in the toolbar to see the optimal results
selected by CAGE in the Selected Solution table.

2 View your results in the Results Contour plot. Look for table areas that are not
smooth enough.

You can also view the Results Surface at the same time by right-clicking the title bar
and selecting Split View Horizontally.

Focus on runs that have accepted solutions (green squares) and then solutions that
ran out of time (orange triangles). Red circles indicate failures to meet constraints
with any of the start points (e.g., outside boundary model), so further analysis is less
useful compared to the accepted solutions. For example, investigate green squares
where the table is not very smooth.

3 Click the plots or table to select a point to investigate.

This example shows a selected point where the value of spark is too different from
the neighboring points, which makes the table not smooth enough.

 Analyzing MultiStart Optimization Results

7-63



4 Click  in the toolbar to switch to the Pareto Slice and view all solutions at the
selected point.

This example shows MultiStart results as follows:

• CAGE sorts MultiStart results with the best solution at the top (solution 1).
• The number of solutions is not necessarily the same as the Number of start

points. The example has five feasible solutions, and an additional row displaying
NaNs. This means that CAGE found six different feasible solutions for at least one
other run in this optimization. Ignore any rows with NaNs. CAGE shows the same
maximum number of solution rows for every run. If there are rows beyond the
feasible solutions for the current run, then CAGE fills the rows with NaNs.

7 Optimization Analysis

7-64



You can set the tolerance between different solutions with the Tolerance for
separate solutions MultiStart setting.

Here, CAGE has selected the best solution with the optimal value of torque, BTQ. In
this case you can instead select another solution to make a smoother table in spark
(S) with only a small tradeoff in the torque value.

5 Change the selected solution using the Selected solution control, or click the

solution in the table and click Select Solution  in the toolbar.
6 Return to the Selected Solution slice to view the difference in your table.
7 Repeat the process to investigate your other results.

Creating Sum Optimizations from MultiStart Optimizations

When you are satisfied with all selected solutions for your optimization, you can make a
sum optimization over all operating points. To create a sum optimization from your point
MultiStart optimization:

1 From your point optimization output node, select Solution > Create Sum
Optimization.

The toolbox creates a sum optimization with your selected solution values defining
the operating points. The create sum optimization function converts the
MultiStart optimization to a standard single objective sum optimization (foptcon
algorithm) and uses your accepted selected solutions for variable values.

2 Add table gradient constraints to ensure smooth control and engine response.

 Analyzing MultiStart Optimization Results

7-65



See also “Create Sum Optimization from Point Optimization Output” on page 7-4.

7 Optimization Analysis

7-66



Analyzing Multiobjective Optimization Results

In this section...
“Pareto Graphs” on page 7-67
“Weighted Objective Pareto Slice” on page 7-68
“Multiobjective Output Messages” on page 7-71

Pareto Graphs

The Pareto Front Graphs (click ) are for multiobjective optimization where there is
more than one solution at each run. The Pareto graphs show the available solutions for
the selected run:

• The current selection is highlighted with a gray circle outline.
• Pareto solutions are green squares.
• Dominated solutions are orange triangles.
• Unsuccessful solutions are red circles (constraints may not be met or the algorithm

ran out of time).
• The selected solution is a star shape.

Click in the tables or graphs to view solutions. To change the selected solution, edit the
number in the Selected solution box. The selected solution is displayed in all other
graphs (objective and constraint).

Note:

• The Pareto Graphs show all the solutions for the selected run. These graphs help you
select best solutions for each run.

• It can be useful to display the Solution Information view at the same time to view
information about a selected solution. You might want to select a dominated solution
(orange triangle) over a pareto solution (green square) to trade off desired properties.

• The “Weighted Objective Pareto Slice” on page 7-68 shows a weighted sum of the
objective values over all runs for each solution.

Use the Pareto graphs, shown in the following figure, in combination with the table
views (Solution Slice and Pareto Slice) and the other plots in the graphs (Objective Slice

 Analyzing Multiobjective Optimization Results

7-67



and Constraint Slice graphs) to help you select best solutions for each run. You can
collect these solutions together in the “Selected Solution Slice” on page 7-53.

Before you run an NBI multiobjective optimization you can specify how many solutions
you want the optimization to find by using the Optimization Parameters dialog box. The
NBI default number of solutions is 10 for two objectives. For more objectives, see “NBI
Options” on page 6-64. Click Set Up and Run Optimization to change the number of
solutions before running again. In the Optimization Parameters dialog box, change how
many tradeoff solutions you want the optimization to find per run. See “NBI
Optimization Parameters” on page 6-64.

For gamultiobj, if CAGE does not find a feasible solution, you might try increasing the
default population size. See “gamultiobj Optimization Parameters” on page 6-69. To
examine example gamultiobj optimization results, see “Examine the Multiobjective
Optimization” in the Multi-Injection Diesel Calibration case study.

Weighted Objective Pareto Slice

The Weighted Objective Pareto Slice view (click  ) shows a weighted sum Pareto
solution. This table shows a weighted sum of the objective values over all runs for each
solution. For a single objective optimization there is a single cell, which is the sum of the
objective across all runs.

7 Optimization Analysis

7-68



In the following multiobjective example, the value in the Objective1 column in the first
row shows the sum of the solution 1 values of the first objective across all runs. The
second row shows the sum of solution 2 Objective1 values across all runs, and so on for
all ten solutions in this case. This information can be useful, for example, for evaluating
total emissions across a drive cycle. The default weights are unity (1) for each run.

You can change the weights; for example, if you need a weighted sum of emissions over a
drive cycle, you might want to give a higher weight to the value at idle speed. You can
alter weights by clicking Edit Pareto Weights (  ) in the toolbar. The Pareto Weights
Editor appears.

 Analyzing Multiobjective Optimization Results

7-69



In this dialog box, you can select objectives to sum, and select weights for any run by
clicking and editing, as shown in the previous example. The same weights are applied to
each solution to calculate the weighted sums. Click OK to apply new weights, and the
weighted sums are recalculated.

You can also specify weights with a MATLAB vector or any column in the optimization
output by selecting the other option buttons. If you select Output column you can also
specify which solution; for example, you could choose to use the values of spark from
solution 5 at each operating point as weights. Click Table Entry again, and you can
then view and edit these new values.

Note Weights applied in the Weighted Pareto View do not alter the results of your
optimization as seen in other views. You can use the weighted sums to investigate your
results only. You need to perform a sum optimization if you want to optimize using
weighted operating points.

The Accept check box is disabled in this view. The exit flag is the minimum of all of the
runs that are summed over, so the Accept status can only go green if all runs are green.

7 Optimization Analysis

7-70



Multiobjective Output Messages

Multiobjective solutions can have specific exit messages.

To view the exit flag, hover over the accept status icon (green square, orange triangle, or
red circle) for a run in the Optimization output view. You can view the algorithm exit
messages for the currently selected run by selecting View > Current View > Solution
Information. Check these messages to check for problems with your optimization.

Multiobjective gamultiobj Output Messages

For information on gamultiobj output messages, see gamultiobj.

Multiobjective NBI Output Messages

Shadow solutions are displayed at the start of the solution list and indicated by the
prefix “Shadow solution” in the message.

The NBI output messages include the exit flags and the first part of the message
returned by fmincon calls. Extra information about the NBI solution is added to this to
explain certain situations. The extra NBI messages are shown in the following table.
Exit flag NBI Message
6 Some shadow solutions do not differ. Remove one of the non-competing

objectives.

Note CAGE does not run the subproblems if any pair of shadow solutions are
the same (within tolerance). All subproblems will show an exit flag of -8.

0 The solver stopped prematurely in at least one shadow problem and some
shadow solutions do not differ.

Note All shadow problems share the exit flag of 0, and CAGE does not run
the subproblems (all will show an exit flag of -8)

-7 Solution is dominated by other solutions.

Note Only successful solutions (with an fmincon exit flag >= 0) are used to
determine whether a point is dominated.

 Analyzing Multiobjective Optimization Results

7-71



Exit flag NBI Message
-8 NBI subproblem was not run because some shadow problems do not differ.
-9 NBI subproblem was not run because a shadow problem failed.

See Also

Related Examples
• “Tools for Optimizations with Multiple Solutions” on page 7-51

7 Optimization Analysis

7-72



Interpreting Sum Optimization Output
Some features of the output node are specific to sum optimizations. Using the Example
Problem (see “Example Problem to Demonstrate Controls for Sum Optimizations” on
page 6-23) for reference these features are described in the following sections:

In this section...
“Operating Point Indices” on page 7-73
“Optimization Results Table” on page 7-74
“Objective Graphs” on page 7-75
“Objective Contour Plot” on page 7-76
“Constraint Graphs” on page 7-76
“Constraint Summary” on page 7-77
“Table Gradient Constraint Output” on page 7-78

Operating Point Indices
As in the Input Variable Values pane in the Optimization view, in the output view, the
index of the operating point within a run is denoted by the number in brackets. The
following figures provide examples.

In the Optimization Results table, the index of the operating point within the run is
shown in brackets. In the Free Variable Values table and graphical displays, the input

 Interpreting Sum Optimization Output

7-73



variable at the i-th operating point within a run is denoted by InputVariableName(i),
for example, S(4) is the spark value at the 4th operating point, EXH(1) is the value of
exhaust cam phasing at the first operating point.

Optimization Results Table
Features of the Optimization Results table are labeled in the following figure.

A B C D E F G

Key to Optimization Results Table

• A: The run index — Index into the set of operating points that is being displayed.
• B: The quantity index.

• For fixed and free variables this index corresponds to the index of the operating
point within the run.

• For objectives this corresponds to the index of the output for the specific labeled
objective.

• For constraints this corresponds to the index of the output for the specific labeled
constraint.

• C: Optimal Free Variable Settings — The optimal settings in this case of S, EXH and
INT at each operating point in the run. For example, the optimal settings of S, EXH
and INT at the third operating point in this run 1 are S=18.565°, EXH= 24.801°, INT=
41.214°

7 Optimization Analysis

7-74



• D: Fixed Variable Settings — These settings define the operating points for the run
and other fixed variables (such as weights) required for objectives and constraints.
These values were set up before the optimization was run. For information on the set
up of these values, see “Using Variable Values Length Controls” on page 6-24.

• E: Optimal objective outputs — The optimal values of any objective outputs are
displayed here, e.g., the optimized value of the weighted sum of TQ (115.002 Nm) over
the 5 operating points shown in this case.

• F,G: Constraint outputs at optimized control parameter settings — The value of
constraint outputs are displayed here. For the example problem, the model constraint
outputs are displayed in the section labeled F. Note that the number of constraint
outputs matches the number of operating points. The table gradient constraint
outputs are displayed in the section labeled G. The number of values returned by the
table gradient constraint is dependent on the internal settings of that constraint (see
information see “Table Gradient Constraint Output” on page 7-78). For more
information on the number of values returned by objectives and constraints, see
“Algorithm Restrictions” on page 6-27.

Objective Graphs

The objective graphs for sum objective problems show the objective cross section plots as
in the point case. However, plots are now displayed against each control parameter at
each point in the set of operating points within each run. In the following figure, the
weighted sum of TQ is plotted against the spark values at the first four operating points
in run 1.

 Interpreting Sum Optimization Output

7-75



Objective Contour Plot

The objective contour plot for sum objective problems shows the contours of the objective
as in the point case. However, plots can now be displayed against any pair of control
parameters chosen from all the control parameters at each point in the set of operating
points within each run. In the following figure, a contour plot of the weighted sum of TQ
is plotted against the value of exhaust valve timing for the third operating point, EXH(3)
and the value of intake valve timing for the third operating point, INT(3).

Constraint Graphs

The constraint graphs for sum objective problems show the cross section plots of the left
side of the constraints as in the point case. However, in the sum case there are several
more inputs and outputs that can be plotted. Specifically, each constraint can return
several outputs (see “Algorithm Restrictions” on page 6-27 for more detail) and these can
be displayed against each control parameter at each point in the set of operating points
within each run.

7 Optimization Analysis

7-76



In the example problem, the exhaust temperature and residual fraction constraints have
5 outputs, one for each operating point. In the graphs shown, one output of the exhaust
temperature and residual fraction constraints is displayed against four free variables.
Specifically, the exhaust temperature model evaluated at the fifth operating point in run
1 (Constraint1(5)) and the residual fraction model evaluated at the first operating
point in run 1 (Constraint2(1)) is plotted against the values of exhaust valve timing at
operating points 4 and 5 (EXH(4) and EXH(5)) plus the values of intake valve timing at
operating points 1 and 2 (INT(1) and INT(2)).

See also “Table Gradient Constraint Output” on page 7-78.

Constraint Summary

The constraint summary for sum optimizations shows a summary of all the constraint
outputs for each constraint at the optimized control parameter settings for the selected
run. The constraint summary table for the Example problem is shown in the following
figure.

 Interpreting Sum Optimization Output

7-77



A summary of the first constraint, EXTEMP <= 1290°C at each operating point
(Constraint1), is shown in the first five rows of the table. In this case, each of the rows
corresponds to an evaluation of the constraint at each operating point within the run. For
example, the second row of Constraint1 details an evaluation of EXTEMP <= 1290°C
at the second operating point in the set of operating points in the run, as indicated in the
Description: EXTEMP(S(2), N(2), EXH(2), INT(2))<= 1290.

The summary for the table gradients (Constraint3 and Constraint4) is shown. For a
detailed explanation of table gradient outputs, see the next section, “Table Gradient
Constraint Output” on page 7-78.

Table Gradient Constraint Output

The table gradient constraint output is best explained using an example problem.

Control parameters/free variables: SPK, EXH, INT

Fixed variables: N, L

Objective: Maximize Weighted sum of TQ(SPK, EXH, INT, N, L) over the points shown in
the following table (with unit weights at each point):
N L
3000 0.5
3000 0.6
4000 0.5
4000 0.6

7 Optimization Analysis

7-78



Table Gradient Constraint: Maximum change in EXH is bounded by the following
specifications:

• No more than 5° per 1000rpm change in N
• No more than 4° per 0.1 change in L
• Over the following 2-by-2 table: N breakpoints = [3000 4000]; L breakpoints =[0.5 0.6]

In this case, the optimization operating points are the same as the selected table
breakpoints for the table gradient constraint, but these are not necessarily always the
same.

When the optimization has run, the following optimal values of EXH are returned from
the optimizer, as shown in the following tables.
N/L L(1) L(2)
N(1) EXH(1) EXH(2)
N(2) EXH(3) EXH(4)
The values for all these items are shown in the following table.
N/L 0.5 0.6
3000 2.225 0
4000 -2.775 –5

Table gradient constraints calculate the gradient between the values of specified free
variable at the specified table points specified by the constraint. In the example problem,
the table gradient constraint returns a set of constraint values as follows.

The table gradient constraint takes the values of EXH from the optimizer, and then
determines the value of EXH at the grid points defined in the table gradient constraint.
In this case, those grid points are the same, so this is identical to the preceding table. In
cases where the grid points in the optimization do not match those in the table gradient
constraint, a radial basis function interpolant is used to estimate the constrained
variable on the table gradient grid points.

The table gradient constraint takes the grid of EXH values and calculates row and
column gradients. Row gradients in the direction of increasing N, rginc, are calculated on
the grid as follows:

rg1
inc = (EXH(3)–EXH(1))/(N(2)–N(1))

= (–2.775–2.225)/1000

 Interpreting Sum Optimization Output

7-79



= –0.005

rg2
inc = (EXH(4)–EXH(2))/(N(2)–N(1))

= (–5–0)/1000

= –0.005

The table gradient constraint restricts the row and column gradients in each direction.
Row gradients in the direction of decreasing N, rgdec, are calculated on the grid as follows:

rg1
dec = –rg1

inc = 0.005

rg2
dec = –rg2

inc = 0.005

Column gradients in the direction of increasing L, cginc, are calculated on the grid as
follows:

cg1
inc = (EXH(2)–EXH(1))/(L(2)–L(1))

= (0–2.225)/0.1

= –22.25

cg2
inc = (EXH(4)–EXH(3))/(L(2)–L(1))

= (–5–(–2.775))/0.1

= –22.25

Similarly, column gradients in the direction of decreasing N, rgdec, are calculated on the
grid as follows:

cg1
dec = –cg1

inc = 22.25

cg2
dec = –cg2

inc = 22.25

The table gradient constraint implements the following:

7 Optimization Analysis

7-80



rg

rg

rg

rg

cg

cg

cg

cg

inc

inc

dec

dec

inc

inc

dec

dec

1

2

1

1

1

2

1

1

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
ÍÍ
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

£

5 1000

5 1000

5 1000

5 1000

4 0 1

4 0 1

4

/

/

/

/

/ .

/ .

/ 00 1

4 0 1

.

/ .

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

This equation can be rewritten as Left Value <= Right Value. In each row the Left Value
must be smaller than the Right Value to meet the constraint.

The Constraint Value numbers returned to the optimizer are calculated as follows:
Constraint Value = Left Value – Right Value.

rg

rg

rg

rg

cg

cg

cg

cg

inc

inc

dec

dec

inc

inc

dec

dec

1

2

1

1

1

2

1

1

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
ÍÍ
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

-

5 1000

5 1000

5 1000

5 1000

4 0 1

4 0 1

4

/

/

/

/

/ .

/ .

/ 00 1

4 0 1

0 005

0 005

0 005

0 005

.

/ .

.

.

.

.

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

=

-

-

--

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

-
22 25

22 25

22 25

22 25

0 005

0 0

.

.

.

.

.

. 005

0 005

0 005

40

40

40

40

0 01

0 01

.

.

.

.

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

=

-

-

00

0

62 25

62 25

17 75

17 75

-

-

-

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

.

.

.

.

These constraint values are shown in the Optimization Results table. Negative
constraint values mean the constraint is feasible, and infeasible constraints are
highlighted yellow. In the following figure, these values appear in the Constraint4
column. The Optimization Results pane also shows the fixed variable settings, the
optimal free variable settings, and the evaluation of objectives and constraints at the
optimal free settings.

 Interpreting Sum Optimization Output

7-81



The constraint graphs for a table gradient constraint show how the Left Value of each
output of a table gradient constraint depends on the free variables in the optimization.
These graphs for the example problem appear in the following figure.

The Left Value is compared with a plot of the Right Value output on the same axes. This
comparison is illustrated for the table gradient example problem. Consider the top-left
graph in the figure shown. Constraint4(1) is the first Left Value (rg1

inc) of the table
gradient constraint in the example problem. Recall that this can be written as

7 Optimization Analysis

7-82



rg1
inc = (EXH(3)–EXH(1))/(N(2)–N(1))

The top left graph shows a plot of rg1
inc against EXH(1) with all other free variables set to

their optimal values, i.e.,

rg1
inc = (2.775–EXH(1))/1000

which is the blue line shown in the top left graph. The horizontal red line shows the
Right Value (i.e., the upper bound on rg1

inc). Because this value is an upper bound on the
allowable gradient, the yellow region above the line shows where the table gradient
constraint is infeasible. The vertical orange line shows the optimal value of the free
variable, EXH(1). The blue marker on the Constraint4(1) axis marks the Left Value (the
value of rg1

inc) at the intersection of the optimal EXH(1) value and the blue line.

The graph of Constraint4(1) against EXH(2) shows a flat line. The flat line indicates that
there is no dependence of rg1

inc on EXH(2), as it is calculated as (EXH(3)–EXH(1))/(N(2)–
N(1)).

The other constraint graphs can be analyzed in a similar way.

Note If you are using table gradient constraints the solution may appear infeasible upon
inspection of the objective and constraint graphs (the graphs may appear to be entirely
yellow). There are cases when the solution is actually feasible in this case. This
appearance of infeasibility often arises in sum problems which have tight table gradient
constraints. In such cases, you should check the Solution Information pane and the
Constraint Summary Table to check whether a feasible solution has been found.

A summary of the table gradient constraint output is shown in the Constraint Summary
table, as shown following.

The maximum gradient in the row and column direction (if it is a 2-D table gradient
constraint) is shown in the table. In the example shown, observe the maximum column
gradient of EXH. Recall previously that the cg (column gradient) values were calculated

 Interpreting Sum Optimization Output

7-83



to be –22.25, –22.25, 22.25 and 22.25. The maximum column gradient is 22.25, shown in
the Left Value column in the Constraint Summary table. The bound at the maximum
value of the column gradient is 40, shown in the Right Value column in the table. The
Constraint Value column shows the value of Left Value minus Right Value, which is
–17.75, so the constraint has been met.

The Constraint Value gives a measure of the distance to the constraint boundary for
each constraint output. If the Left Value > Right Value and greater than the tolerance for
any of the constraint outputs, the constraint value is bold and the row is highlighted
yellow. By default this tolerance is taken from the optimization constraint tolerance. You
can control the value used for this highlighting by selecting View > Edit Constraint
Tolerance. The highlighting indicates that this constraint distance should be checked to
see if the constraint is feasible at that point.

7 Optimization Analysis

7-84



Writing User-Defined Optimizations

This section includes the following topics:

• “User-Defined Optimizations” on page 8-2
• “Example User-Defined Optimization” on page 8-9
• “Creating an Optimization from Your Own Algorithm” on page 8-16
• “Optimization Function Reference” on page 8-31
• “Functions — Alphabetical List” on page 8-35

8



User-Defined Optimizations

In this section...
“Introducing User-Defined Optimization” on page 8-2
“Implementing Your Optimization Algorithm in CAGE” on page 8-3
“About the Worked Example Optimization Algorithm” on page 8-5
“Checking User-Defined Optimizations into CAGE” on page 8-7

Introducing User-Defined Optimization

User-defined optimizations are described in the following sections:

• “Implementing Your Optimization Algorithm in CAGE” on page 8-3 describes how
to customize the optimization template to use your optimization routines in CAGE.

• There is a step-by-step guide to using the example provided to help you understand
how to modify the template file to use your own optimization functions. See the
tutorial section “Example User-Defined Optimization” on page 8-9.

In many cases the standard routines supplied for constrained single objective (foptcon,
ga, and patternsearch) and multiobjective optimization (NBI) are sufficient to allow
you to solve your optimization problem. Sometimes, however, you need to write a
customized optimization algorithm. This can be useful in many situations, for example,

• For an expert to capture an optimization process to solve a particular problem, for
example, determination of optimal spark angle and exhaust gas recirculation rate on
a port-fuel injection engine

• To implement an alternative optimization algorithm to those supplied
• To implement a complex constraint or objective that is only possible through writing

code
• To produce custom output graphics

User-defined optimization functions in CAGE allow advanced users to write their own
optimization routines that can access current CAGE data. In order to access the user
function from CAGE, you must register the file with CAGE and place it on the MATLAB
path. It is crucial that this function conforms to the template specified. The following
sections describe this process.

8 Writing User-Defined Optimizations

8-2



Implementing Your Optimization Algorithm in CAGE

At some point a CAGE optimization function calls on an algorithm to optimize the
objective functions over the free variables. You can implement the algorithm in the
CAGE optimization function as an external MATLAB file. Use the template file as a
basis for your optimization function. The best way to understand how to alter the
template file to implement your own optimization algorithms is to compare it with the
worked example, as described in the tutorial.

• See the following optimization tutorial sections:

• “Example User-Defined Optimization” on page 8-9 describes the process of using
the worked example

• “Creating an Optimization from Your Own Algorithm” on page 8-16 describes in
detail the steps necessary to use an example optimization algorithm in CAGE

• “About the Worked Example Optimization Algorithm” on page 8-5, later on this
page, examines the coding involved in implementing an external optimizer in a CAGE
optimization file

• “Checking User-Defined Optimizations into CAGE” on page 8-7, later on this page,
explains how to check in your optimization function so you can use it in CAGE

Optimization Function Structure

The optimization function files have two sections. To compare these sections in the
worked example with the template file on which it is based:

1 Locate and open the file mbcOStemplate in the mbctraining folder.
2 Type the following at the command line to open the example:

edit mbcOSworkedexample

The two sections are the Options section and Evaluate section.

1 The Options function section contains the settings that define your optimization.
Here you can set up these attributes:

• Name
• Description
• Free variables

 User-Defined Optimizations

8-3



• Objective functions
• Constraints
• Helper data sets
• Optimization parameters

CAGE interacts with the cgoptimoptions object, where all these settings are
stored.

See “Methods of cgoptimoptions” on page 8-31 for information about setting up the
options section.

If you leave the cgoptimoptions function unchanged, your optimization function
must be able to support the default options. That is, your optimization will have:

• One objective
• Any number of constraints (selected by the user in CAGE )

2 The Evaluate function section contains your optimization routine. CAGE calls this
section when the Run button is clicked.

Place your optimization routine under this section, interacting with CAGE
(obtaining inputs and sending outputs) via the cgoptimstore object. Your
optimization must conform to the following syntax:

optimstore = <Your_Optimization> (optimstore)

where <Your_Optimization> is the name of your optimization function.

Any local functions called by your optimization routine should also be placed at the
bottom of this section.

See “Methods of cgoptimstore” on page 8-33.

Note Be careful not to overwrite the worked example and template files when you are
trying them out — save them under a new name when you make changes.

There is a step-by-step guide describing how to modify the template using the worked
example optimization function in the optimization tutorial. See “Example User-Defined
Optimization” on page 8-9.

8 Writing User-Defined Optimizations

8-4



About the Worked Example Optimization Algorithm

mbcweoptimizer is an example of a user-specified optimization that solves the following
problem:

max TQ over (AFR, SPK).

• [bestafr, bestspk] = mbcweoptimizer(TQ) finds a maximum (bestafr,
bestspk) to the function TQ.

TQ must be a function (or a function handle) where the first two input arguments are
AFR and SPK respectively. TQ functions with more parameters can be used. The
extra parameters to these functions can be specified using anonymous functions. For
example if a TQ model has N and L inputs, you can use the following call to
mbcweoptimizer:

[bestafr, bestspk] = mbcweoptimizer(@(afr, spk)TQ(afr, spk, N, L))
• [bestafr, bestspk]=mbcweoptimizer(TQ, afrrng, spkrng) finds a maximum

(bestafr,bestspk) to the function TQ.

afrrng and spkrng are 1-by-2 row vectors containing search ranges for those
variables.

• [bestafr, bestspk]=mbcweoptimizer(TQ, afrrng, spkrng, res) finds a
maximum (bestafr,bestspk) to the function TQ.

This optimization is performed over a res-by-res grid of (AFR, SPK) values. If res is
not specified, the default grid resolution is 25.

The Structure of the Worked Example

The best way to understand how to implement an external optimizer in a CAGE
optimization function is to study the details of the example.

• To view the whole worked example file, at the command line, type

edit mbcOSworkedexample

The following code section is taken from the Evaluate section of the worked example file
as an example.

 User-Defined Optimizations

8-5



A

The code fragment above is in the i_Evaluate local function. This local function is
called once for each run of the script. The line of code labeled A above calls the worked
example optimization algorithm external to the optimization function. As with functions
in the Optimization Toolbox product, the first argument to the call to the optimizer is a
function handle that evaluates the objectives at a given input point. We recommend you
place the function pointed at by the function handle in the optimization file. If you do not
place them in the same file you must make sure the evaluate function file is on the
MATLAB path. As an example, the optimization evaluation function in the worked
example optimization is shown in the code fragment following.

8 Writing User-Defined Optimizations

8-6



B

The inputs to n_evalTQ are the required inputs for the torque (in this case) model. To
evaluate the objective, the evaluate method from the optimstore object is used. In the
above example, the line of code referenced by B evaluates the torque model in the worked
example at the (afr, spk) input points. The values of (N, L) at the current run are used
in the evaluation of the torque model. CAGE retrieves these values from optimstore
when the torque model is evaluated.

The two local functions presented above are an example of how to implement an external
optimizer in a CAGE optimization file.

See also the optimization tutorial section “Creating an Optimization from Your Own
Algorithm” on page 8-16, which describes in detail the steps involved in incorporating
an example algorithm into a CAGE optimization file.

Checking User-Defined Optimizations into CAGE

When you have modified the template to create your own optimization function, you
must check it into the Model-Based Calibration Toolbox product in order to use the
function in CAGE. Once you have checked in your optimization function it appears in the
Optimization Wizard. See “Optimization Wizard” on page 6-12.

To check a user-defined optimization into CAGE,

1 Select File -> Preferences.
2 Click the Optimization tab and click Add... to browse to your file. Select the file

and click Open. This registers the optimization function with CAGE. You need to do
this when you customize your own optimizations.

 User-Defined Optimizations

8-7



The example shows the worked example function, which is already registered with
CAGE for use in the optimization tutorial.

3 You can click Test to check that the optimization function is correctly set up. This is
a very useful function when you use your own functions; if anything is incorrectly set
up the test results tell you where to start correcting your function.

You can see an example of this by saving a copy of the worked example file and
changing one of the variable names (such as afr) to a number. Try to check this
altered function into CAGE and the Test button will return an informative error
specifying the line you have altered.

4 Click OK to dismiss the CAGE Preferences dialog box and return to the CAGE
browser.

Registered optimizations appear in the Optimization Wizard when you set up a
new optimization.

Registered optimizations appear in the Create Optimization from Model Wizard
unless your user-defined optimization script defines operating point sets and/or a
fixed number of free variables. This is common with Version 2.0 scripts. If this is the
case you must use the Optimization Wizard instead.

8 Writing User-Defined Optimizations

8-8



Example User-Defined Optimization
In this section...
“Example Overview” on page 8-9
“Using the Worked Example Optimization” on page 8-10

Example Overview

There is a simple worked example provided to show you what you can do by modifying
the template file to write your own optimizations. This example demonstrates a simple
use of the CAGE optimization feature. The aim of this example is to obtain values of
spark (SPK) and air/fuel ratio (AFR) that maximize torque at a given speed (N) and load
(L). These values could then be used to fill calibration tables.

An example of a user-defined optimization algorithm is provided.

• To see a description of this algorithm, at the command line type

help mbcweoptimizer

mbcweoptimizer is an example of a user-specified optimization that solves the following
problem:

Maximum TQ over (AFR, SPK) at a given (N, L) point.

The syntax for this example function, mbcweoptimizer, mimics that used in the
Optimization Toolbox product.

• To evaluate this at the command line, type this example:

[bestafr, bestspk] = mbcweoptimizer(@(afr, spk)mbcTQ(afr,...
spk, 1000, 0.2))

The optimization finds values of AFR and spark (the free variables) that give the
maximum output from TQ at the values of speed and load (the fixed variables) that you
specified, in this case speed = 1000, load = 0.2, as shown below.

bestafr =
12.9167
bestspk =
25

 Example User-Defined Optimization

8-9



To use this optimization algorithm in CAGE, you need to include the function in a CAGE
optimization function script. This worked example modifies the template provided to
show you how to use your own algorithms within CAGE. You can find detailed
information on all the available CAGE optimization interface functions in “User-Defined
Optimizations” on page 8-2 in the CAGE documentation.

• To view the worked example file, at the command line, type

edit mbcOSworkedexample

The worked example optimization wraps mbcweoptimizer in a function that can be
called by the CAGE optimization feature. When you run your optimization from CAGE,
you can alter the search ranges of the free variables and the resolution of the search.

The next section, “Using the Worked Example Optimization” on page 8-10,
demonstrates how to use the example within CAGE.

The section “Creating an Optimization from Your Own Algorithm” on page 8-16 is a
detailed tutorial example explaining how to incorporate an example user-defined
optimization algorithm into a CAGE optimization function.

Using the Worked Example Optimization

In order to run any optimization, you first need to set up your CAGE session with a
model.

For this example, the CAGE session requires

• A torque model
• A variable dictionary defining required variable ranges and set points (N, L, AFR, and

SPK)
• A data set defining the (N,L) operating points where you want to run the optimizer

There is a preconfigured session provided that contains the model, variable dictionary,
and data set.

1 Select File > Open Project and load the file optimworkedexample.cag. This is in
the mbctraining folder.

• The tq model was fitted to the Holliday engine data and exported from the Model
Browser quick start tutorial (also used in the CAGE feature calibration tutorial).

8 Writing User-Defined Optimizations

8-10



It can be found in tutorial.exm in the mbctraining folder. To view this model
in your current session, click the Models button in the Data Objects pane.
There is also another model in the session that you will use later.

• You can look at the variables by clicking the Variable Dictionary button in the
Data Objects pane.

• You can look at the operating point set by clicking Data Sets in the Data
Objects pane. Note you can specify fixed variables for optimizations either
directly in the optimization view or import them from a data set or table.

2 Select File > New > Optimization.

The Optimization Wizard appears.
3 Select WorkedExample, and click Next.
4 Associate each pair of inputs and variables, by clicking afr and A in the left and

right lists, and then click the Select button. Similarly associate spark with spk.
Click Next.

5 The next screen of the wizard automatically shows the Torque model selected and
Maximize chosen; these are specified in the function. Select tq in the CAGE model
list and click the button to match it with the Torque optimization model, then click
Finish.

 Example User-Defined Optimization

8-11



CAGE switches to the Optimization view and the new Optimization node
appears in the tree.

6 If you ran the optimization now it would run at one point, the set point of all the
variables. You use the free and fixed Variable Values panes to select operating
points. You can edit points manually or import them. Select Optimization >
Import From Data Set.

8 Writing User-Defined Optimizations

8-12



The project file contains a data set with N and L values, and these are automatically
selected. Click OK to import.

Notice 36 rows appear in both fixed and free variable panes, and operating point
values have been imported into the N and L columns in the Fixed Variables pane.
The initial values for A and spark for each point are the set points in the variable
dictionary.

 Example User-Defined Optimization

8-13



7 Click Run Optimization in the toolbar.
8 When the optimization completes, the view switches to the new

Optimization_Output node.

The output display should look like the following. The optimization has found the
values of SPK and AFR that give the maximum model value of torque at each
operating point specified. Select different operating points by clicking in the table:
the model plots at the selected operating point are shown. There is only one solution
per operating point, so you cannot scroll through the solutions.

8 Writing User-Defined Optimizations

8-14



For a detailed walk-through of incorporating an example user-defined optimization
algorithm into a CAGE optimization function, see the next tutorial section, “Creating
an Optimization from Your Own Algorithm” on page 8-16.

 Example User-Defined Optimization

8-15



Creating an Optimization from Your Own Algorithm

In this section...
“Process Overview” on page 8-16
“Step 1: Verify the Algorithm” on page 8-17
“Step 2: Create a CAGE Optimization Function” on page 8-19
“Step 3: Define the Optimization Options” on page 8-20
“Step 4: Add the Algorithm to the Optimization Function” on page 8-23
“Step 5: Register Your Optimization Function with CAGE” on page 8-26
“Step 6: Verify Your New Optimization” on page 8-27

Process Overview

The CAGE optimization feature allows you to use your own optimization algorithms as
alternatives to the library routines foptcon, NBI, ga and patternsearch.

Using an example, this tutorial illustrates how to take an existing optimization
algorithm and implement it as an optimization function for use in CAGE optimization.

The problem to be solved is the worked example problem:

Maximize torque (TQ) over the free variables (SPK, AFR) over a specified set of (N, L)
points. These points are defined in the data set New_Dataset, which can be found in the
CAGE session optimworkedexample.cag and can be imported to the fixed variable
values pane in the Optimization view.

The torque model to be used is that in /mbctraining/Holliday.mat.

The process steps are:

1 Start with your own algorithm. We will use fminunc from the Optimization Toolbox
product as an example.

2 Create a CAGE optimization function.
3 Define the attributes of your optimization in the CAGE optimization function.
4 Add your algorithm to the CAGE optimization function.

8 Writing User-Defined Optimizations

8-16



5 Register your completed optimization function with CAGE.
6 Verify the optimization.

The steps of this tutorial lead you through a series of examples illustrating how to
construct the code to incorporate your own algorithm into an optimization in CAGE.

Before you begin you must create a working folder.

1 Create a new folder (for example, C:\Optimization_Work). We recommend that
you place this folder outside your MATLAB folders to avoid interfering with toolbox
files.

2 Copy the following six files from the mbctraining folder into your new working
folder:

currtutoptim.m
mbcOStemplate.m
mbcOStutoptimfunc_s1.m
mbcOStutoptimfunc.m
optimtut.mat
optimtuteg.mat

3 Make sure your new working folder is on the MATLAB path; either change Current
Folder in MATLAB to the new working folder, or add the folder to the path as
follows:

a On the Home tab, in the Environment section, click Set Path.
b Click Add Folder and browse to your working folder.
c Click OK.
d Click Save.
e Click Close.

Step 1: Verify the Algorithm

currtutoptim.m is an example file to verify that fminunc solves the worked example
problem. You can try this at the MATLAB command line.

1 To open the algorithm file in the Editor, either enter open currtutoptim.m at the
command line, or if the Current Folder in MATLAB is your new working folder,
then double-click currtutoptim.m in the Current Folder. You should see the code
in the MATLAB editor.

 Creating an Optimization from Your Own Algorithm

8-17



2 To verify that fminunc solves the worked example problem, type the following
command at the MATLAB prompt:
bestX = currtutoptim

After the progress messages complete the workspace output should resemble the
following:
BestX =      
       23.768        12.78
       18.179        12.78
       14.261        12.78
       12.014        12.78
       11.439        12.78
       12.535        12.78
       27.477        12.78
       21.887        12.78
       17.969        12.78
       15.722        12.78
       15.147        12.78
       16.243        12.78
       31.185        12.78
       25.595        12.78
       21.677        12.78
        19.43        12.78
       18.855        12.78
       19.951        12.78
       34.893        12.78
       29.303        12.78
       25.385        12.78
       23.138        12.78
       22.563        12.78
       23.659        12.78
       38.601        12.78
       33.012        12.78
       29.093        12.78
       26.847        12.78
       26.271        12.78
       27.368        12.78
       42.309        12.78
        36.72        12.78
       32.802        12.78
       30.555        12.78
       29.979        12.78
       31.075        12.78

8 Writing User-Defined Optimizations

8-18



The matrix bestX contains the optimal SPK and AFR values that maximize the MBC
model torque (exported from Holliday.mat) at the speed and load points defined in the
matrix data.

fminunc is the example optimization algorithm that you want to transfer to CAGE for
use in the optimization GUI.

This tutorial shows how to make fminunc available for use in the CAGE optimization
feature.

Step 2: Create a CAGE Optimization Function

Any optimization algorithm you want to use in CAGE must be contained in an
optimization function. A CAGE optimization function consists of two sections.

The first section defines the following attributes of the optimization:

• A name for the optimization
• A description of the optimization
• Number of free variables
• Labels for free variables (if required), so the user can match variables in CAGE to the

required algorithm free variables.
• Number of objectives
• Labels for objective functions, so the user can match models in CAGE to the required

algorithm objectives (you can match in CAGE, so labels do not have to be exact in the
optimization function)

• Number of constraints
• Labels for constraints, so the user can match models in CAGE to the required models

in your algorithm constraints
• Number of data sets
• Labels for data sets, so the user can match data sets in CAGE to the required variable

data for your algorithm
• Any other parameters required by the optimization algorithm

The second section contains the optimization algorithm.

Open mbcOStemplate.m in the MATLAB editor.

 Creating an Optimization from Your Own Algorithm

8-19



mbcOStemplate.m is an empty CAGE optimization function. The two (currently empty)
sections of the function are options (for defining optimization attributes) and
optimstore (for defining your optimization algorithm). Note that this file can be used as
a template for any optimization function that you write.

Step 3: Define the Optimization Options

The next step is to define the attributes of your optimization (in Section 1 of the
template).

Open mbcOStutoptimfunc_s1.m. In this file, you can see the optimization attributes
that have been defined.

The following is a code fragment from this file:

8 Writing User-Defined Optimizations

8-20



The optimization attributes are passed to CAGE via the cgoptimoptions object,
referenced by options in the code in mbcOStutoptimfunc_s1.m. See after the table for
details of the cgoptimoptions object. The cgoptimoptions object has a set of
functions that set the optimization attributes in CAGE. This is where you specify the

 Creating an Optimization from Your Own Algorithm

8-21



name, description, free variables, objective functions, constraints, helper data sets, and
optimization parameters for the optimization.

For detailed information on all the available functions, see “Optimization Function
Reference” on page 8-31 in the CAGE documentation. The above code has used the
cgoptimoptions object (options) to set the optimization attributes as described in the
following table.

Look through the code to locate the listed Code Section Where Set for each attribute to
see how each of the optimization options is set up.

Attribute Value Code Section Where Set
Optimization Name Tutorial_Optimization Add a name - setName
Description A simple worked example to maximize

torque
Add a description -
setDescription

Number of Free Variables Cannot be changed by the user in the GUI
(the mode has been set to 'fixed')

Set up the free
variables -
setFreeVariablesMode

Required Free Variables This function requires two free variables,
labeled 'afr' and 'spk'. The user
matches these free variable labels to
CAGE variables in the Optimization
Wizard.

Set up the free
variables -
addFreeVariables

Number of Objectives Cannot be changed by the user in the GUI
(the mode has been set to 'fixed')

Set up the objective
functions -
setObjectivesMode

Required Objective
functions

This function requires one objective
function, which will be labeled 'Torque'
in the optimization feature. The user
matches this 'Torque' label to a CAGE
model.

Set up the objective
functions -
addObjective

Number of Constraints Cannot be changed by the user in the GUI
(the mode has been set to 'fixed')

Set up the
constraints -
SetConstraintsMode

Required Constraints As the mode is fixed and no constraint
labels have been defined, this optimization
has no linear or nonlinear constraints.

Set up the
constraints - %There
are no constraints

8 Writing User-Defined Optimizations

8-22



Attribute Value Code Section Where Set
Number of Helper Data
Sets

Cannot be changed by the user in the GUI
(the mode has been set to 'fixed'). There
are no helper data sets for this example.

Set up the operating
point sets -
setOperatingPointsMod
e

Optimization Parameters This function will allow the user to change
five parameters. These will be displayed in
the Optimization Parameters dialog box
and labelled Display, Maximum
iterations, Maximum function
evaluations, Variable tolerance, and
Function tolerance.

Set up the
optimization
parameters -
addParameter

When one of your optimizations is created in the CAGE GUI, CAGE first calls your
optimization function to define the attributes of the optimization. The function call from
CAGE has the form
optionsobj = <your_optimization_function>('options', optionsobj)

This is how your optimization function receives the cgoptimoptions object. Note that
your optimization function must support this interface.

Step 4: Add the Algorithm to the Optimization Function
In this step you complete the optimization function by adding your algorithm. To do this,
a few changes need to be made to the code that calls the algorithm, as data (for example,
free variable values, constants, and so on) will now be passed to and from CAGE rather
than from the MATLAB workspace.

1 Open mbcOStutoptimfunc.m.

This file contains the completed optimization algorithm. The following is a code
fragment from this file.

A single line has been added, namely
optimstore = tutoptimizer(optimstore)

 Creating an Optimization from Your Own Algorithm

8-23



This line calls the modified optimization algorithm. Note the syntax of the algorithm:
it must take the form

optimstore = <your_optimization_algorithm>(optimstore)
2 The local function tutoptimizer can be found at the bottom of the file

mbcOStutoptimfunc.m. Scroll down to view the algorithm, modified for use in
CAGE.

optimstore is a cgoptimstore object. This is an interface object that allows you to
get data from and set data in the CAGE optimization feature. You can now see how
the optimstore object is used by comparing the modified optimization algorithm,
tutoptimizer, with the original algorithm, currtutoptim, for each of the main
sections of the algorithm.

The following sections illustrate how to convert an existing algorithm for use in CAGE.
Note that in this tutorial example, the code is already modified for you to examine.

Algorithm Section 1

Get the start conditions (x0) for the free variables.

Original code:

x0 passed in from the MATLAB workspace.

Modified code:

x0 = getInitFreeVal(optimstore);

In the original algorithm, x0 is passed into the algorithm from the MATLAB workspace.
In CAGE, we invoke the getInitFreeVal function on the optimstore object to
retrieve x0.

Algorithm Section 2

Perform the optimization (in Section 2 of the template).

Original code (from currtutoptim):

    [bestx(i, :), notused1, notused2, OUTPUT(i)] = fminunc(trqfunc,
 x0, algoptions); 

which calls the following code to evaluate the cost function:

8 Writing User-Defined Optimizations

8-24



    function tq = trqfunc(x)
        
        % Evaluate torque. Note x = [SPK, AFR]
        tq = EvalModel(TQMOD, [x(1), N(i), L(i), x(2)]);
        
        % Maximising torque, so need to return -tq
        tq = -tq;

    end

Modified code:
[bestx, unused, exitFlag, OUTPUT] = fminunc(@trqfunc_new,
 x0, algoptions);

which calls the following code to evaluate the cost function:
    function y = trqfunc_new(x)
        % Evaluate the torque objective function
        y = -evaluate(optimstore, x);
            end

In performing the algorithm, the only difference between the original and modified code
is how the objective function is evaluated. The original algorithm requires the objective
function (a Model-Based Calibration Toolbox model for torque) to be loaded in and
evaluated as required. In the modified algorithm the objective function (torque) is
evaluated by invoking the evaluate function on the optimstore object. Note that the
inputs to the torque model are passed in to the evaluate function as shown in the
following table.
Original Input Input to Evaluate Function
S X(1)
A X(2)

Algorithm Section 3

Retrieve output data.

Original code:

Optimal free variable settings are returned through the variable bestX in
currtutoptim.

Modified code:

 Creating an Optimization from Your Own Algorithm

8-25



% Write results to the optimstore
optimstore = setFreeVariables(optimstore, bestx);

% Set termination message
termMsg = OUTPUT.message;
OUTPUT = rmfield(OUTPUT, 'message');

% Set all information in the optimstore and leave
optimstore = setExitStatus(optimstore, exitFlag, termMsg);
optimstore = setOutput(optimstore, OUTPUT);

In the modified algorithm, the results need to be sent back to the CAGE optimization
feature and not the MATLAB workspace. To do this, optimization results are set in the
optimstore object, which is then returned to CAGE. There are three functions you
should invoke on the optimstore object to return optimization results to CAGE:

• setFreeVariables — Returns the optimal free variable values to CAGE
• setExitStatus — Returns an integer that indicates whether the algorithm

terminated successfully or not (positive is successful). This sets the termination
message.

• setOutput — Returns any diagnostic information on the algorithm to CAGE

Step 5: Register Your Optimization Function with CAGE

The worked example provided is preregistered so you can see it as an option in the
Optimization Wizard when setting up a new optimization. You must register new
functions before you can use them. When you have modified the template to create your
own optimization function, as in this example, you must register it with the Model-Based
Calibration Toolbox product in order to use the function in CAGE. Once you have
checked in your optimization function it appears in the Optimization Wizard.

1 In CAGE, select File > Preferences.

The CAGE Preferences dialog appears.
2 Click the Optimization tab and click Add to browse to your file.
3 Locate the file mbcOStutoptimfunc.m (in the working folder you created) and click

Open.

This registers the optimization function with CAGE.

8 Writing User-Defined Optimizations

8-26



4 You can now test the function by clicking Test. This is a good check for any syntax
errors in your optimization function. This is a very useful function when you use
your own functions; if anything is incorrectly set up the test results will tell you
where to start correcting your function.

You could see an example of this by saving a copy of the worked example file and
changing one of the variable names (such as afr) to a number. Try to check this
altered function into CAGE, and the Test button will return an informative error
specifying the line you have altered.

5 Click OK to leave the CAGE Preferences dialog. If the optimization function tested
successfully, it is registered as an optimization function that can be used in CAGE,
and appears in the Optimization Wizard.

Step 6: Verify Your New Optimization

To verify the algorithm we set up a CAGE session to run the optimization that was
performed in step 1. For this example, the CAGE session has already been set up. Follow
the steps below to run the tutorial optimization in CAGE.

1 In CAGE, select File > Open Project and load the file optimworkedexample.cag
(unless you already have this project open). This project is in the mbctraining
folder.

2 Select File > New > Optimization.
3 The newly registered optimization appears in the list of algorithm names. Select

Tutorial_Optimization from the list. Click Next.

 Creating an Optimization from Your Own Algorithm

8-27



4 Match the variables as shown.

Click Next.
5 Match the Torque model to the tuttq CAGE model as shown.

8 Writing User-Defined Optimizations

8-28



Click Finish.
6 If you ran the optimization now it would run at one point, the set point of all the

variables. You use the free and fixed Variable Values panes to select operating
points. You can edit points manually or import them. Do one of the following:

• If you have the previous worked example optimization in your current session, in
the optimization view increase the Number of runs to 36, and then copy and
paste the fixed variable values from the previous optimization.

• If you do not have the previous optimization in your session, select Optimization
> Import From Data Set. The project file contains a data set with N and L
values, and these are automatically selected. Click OK to import.

Now you should have 36 rows in both fixed and free variable panes, and operating
point values in the N and L columns in the Fixed Variables pane. The initial
values for A and spark for each point are the set points in the variable dictionary.

7 Select Optimization > Set Up. The Optimization Parameters dialog box appears.
Observe the five parameters defined in the tutorial optimization script.

Change the variable and function tolerances to 1e-4, and click OK to close the
dialog box.

8 Run the optimization and view the results. The output data matrix should resemble
the following. Note that the optimal values for A and SPK are very similar to those
from the original algorithm.

 Creating an Optimization from Your Own Algorithm

8-29



8 Writing User-Defined Optimizations

8-30



Optimization Function Reference
In this section...
“Methods of cgoptimoptions” on page 8-31
“Methods of cgoptimstore” on page 8-33

Methods of cgoptimoptions

You use these functions to set up all your optimization settings in the Options section of
the file. You can set up any or all of these seven attributes:

• Name
• Description
• Free variables
• Objective functions
• Constraints
• Helper data sets
• Optimization parameters

The following methods are available:

 Optimization Function Reference

8-31



addFreeVariable Add free variable to optimization
addLinearConstraint Add linear constraint to optimization
addModelConstraint Add model constraint to optimization
addObjective Add objective to optimization
addOperatingPointSet Add operating point set to optimization
addParameter Add parameter to optimization
getConstraints Return information about all optimization constraints
getConstraintsMode Return current usage of constraints
getDescription Get current description for optimization function
getEnabled Get current enabled status for optimization
getFreeVariables Return optimization free variable labels
getFreeVariablesMode Return current usage of free variables
getLinearConstraints Get linear constraint placeholder information
getModelConstraints Get model constraint placeholder information
getName Get current name label for optimization function
getNonlcon Get nonlinear constraint information
getObjectives Return information about optimization objectives
getObjectivesMode Return current usage of objective functions
getOperatingPointSets Return information about optimization operating point sets
getOperatingPointsMode Return current usage of operating point sets
getParameters Return information about optimization parameters
getRunInterfaceVersion Get preferred interface to provide evaluation function
removeConstraint Remove constraint from optimization
removeFreeVariable Remove free variable from optimization
removeObjective Remove objective from optimization
removeOperatingPointSet Remove operating point set from optimization
removeParameter Remove parameter from optimization
setConstraintsMode Set how optimization constraints are to be used
setDescription Provide description for optimization function
setEnabled Set enabled status for optimization function
setFreeVariablesMode Set how optimization free variables are used
setName Provide name label for optimization function
setObjectivesMode Set how optimization objective functions are used
setOperatingPointsMode Set how optimization operating point sets are used
setRunInterfaceVersion Get preferred interface to provide evaluation function

8 Writing User-Defined Optimizations

8-32



Methods of cgoptimstore

The following methods are available:

 Optimization Function Reference

8-33



evaluate Evaluate optimization objectives and constraints
evaluateConstraint Evaluate optimization constraints
evaluateEqCon Evaluate optimization nonlinear equality constraints
evaluateIneqCon Evaluate optimization nonlinear inequality constraints
evaluateNonlcon Evaluate optimization nonlinear constraints
evaluateObjective Evaluate optimization objectives
get Get optimization properties
getA Get linear inequality constraint matrix.
getB Get linear inequality constraint target values.
getConstraint Return constraint labels
getDataset Retrieve data from data set
getFreeVariables Get optimal values of free variables
getInitFreeVal Get initial free values for optimization
getLB Get free variable lower bounds
getLcon Return linear constraint labels
getNumConstraint Return number of constraints per label
getNumConstraintLabels Return number of constraint labels
getNumLcon Return number of linear constraints per label
getNumLconLabels Return number of linear constraint labels
getNumNonlcon Return number of nonlinear constraints per label
getNumNonlconLabels Return number of nonlinear constraint labels
getNumObjectiveLabels Return number of objective labels
getNumObjectives Return number of objectives per label
getNumRowsInDataset Get number of rows in optimization data set
getObjectives Return objective labels for optimization
getObjectiveType Return objective type
getOptimOptions Retrieve optimization options object
getOutputInfo Get output information for optimization
getParam Get optimization parameter
getStopState Current stop state for optimization
getUB Get free variable upper bounds
gridEvaluate Grid evaluation of optimization objectives and constraints
gridPevEvaluate Grid evaluation of prediction error variance (PEV)
isScalarFreeVariables Return whether all free variables are scalars
nEvaluate Natural evaluation of optimization objectives and constraints
nEvaluateConstraint Natural evaluation of optimization constraints
nEvaluateNonlcon Natural evaluation of optimization nonlinear constraints
nEvaluateObjective Natural evaluation of optimization objectives
optimset Create/alter optimization OPTIONS structure
pevEvaluate Evaluate prediction error variance (PEV)
setExitStatus Set exit status information for optimization
setFreeVariables Set optimal values of free variables
setOutput Set diagnostic information for optimization
setOutputInfo Set output information for optimization
setStopState Set current stop state for optimization

8 Writing User-Defined Optimizations

8-34



Functions — Alphabetical List

 Functions — Alphabetical List

8-35



addFreeVariable
Add free variable to optimization

Syntax
options = addfreeVariable (options, label)

Description
A method of cgoptimoptions. Adds a placeholder for a free variable to the
optimization. The string label is used to refer to the variable in CAGE.

See Also

Topics
setFreeVariablesMode
getFreeVariablesMode
getFreeVariables
removeFreeVariable

Introduced before R2006a

8 Writing User-Defined Optimizations

8-36



addLinearConstraint
Add linear constraint to optimization

Syntax
options = addLinearConstraint(options, label, A, B)

Description
A method of cgoptimoptions. Adds a placeholder for a linear constraint to the
optimization. The string label is used to refer to the constraint in the CAGE GUI.
Linear constraints can be written in the form

A(1)X(1) + A(2)X(2) + ... + A(n)X(n) <= b 

where X(i) is the ith free variable, A is a vector of coefficients, and b is a scalar bound.

Examples
% Add SPK and EGR variables to an optimization
opt = addFreeVariable(opt, 'SPK');
opt = addFreeVariable(opt, 'EGR');
% Add a linear constraint such that 3*SPK - 2*EGR <= 30
opt = addLinearConstraint(opt, 'newCon', [3 -2], 30);

See Also

Topics
getLinearConstraints
addModelConstraint
setConstraintsMode
removeConstraint

 addLinearConstraint

8-37



Introduced before R2006a

8 Writing User-Defined Optimizations

8-38



addModelConstraint
Add model constraint to optimization

Syntax
options=addModelConstraint(options, label, boundtype, bound)

Description
A method of cgoptimoptions. Adds a placeholder for a model constraint to the
optimization. The string label is used to refer to the constraint in CAGE.

boundtype can be set either to the string 'greaterthan' or 'lessthan'.

bound must be a scalar real.

If boundtype = 'greaterthan', the model constraint takes the following form:

CAGE model >= bound

Similarly, if boundtype = 'lessthan', the model constraint takes the form

CAGE model <= bound

Examples
An optimization requires a constraint where a user-defined function must be less than
500. The following code line adds a placeholder for this constraint that is labeled 'mycon':

opt = addModelConstraint(opt, 'mycon', 'lessthan', 500);

 addModelConstraint

8-39



See Also

Topics
getModelConstraints
addLinearConstraint
setConstraintsMode
removeConstraint

Introduced before R2006a

8 Writing User-Defined Optimizations

8-40



addObjective
Add objective to optimization

Syntax
options = addObjective(options, label, typestr)

Description
A method of cgoptimoptions. Adds a placeholder for an objective function to the
optimization. The string label is used to refer to the constraint in CAGE.

typestr can take one of four values, 'max', 'min', 'min/max', or 'helper'.

Examples
opt = addObjective(opt, 'newObj', 'max') 

Adds an objective function labeled newObj to the optimization and indicates that it is to
be maximized.

opt = addObjective(opt, 'newObj', 'min/max')

Adds an objective function labeled newObj to the optimization and indicates that the
user should be allowed to choose whether it is minimized or maximized from CAGE.

opt = addObjective(opt, 'newObj2', 'helper')

Adds an objective function labeled newObj2 to the optimization. The string 'helper'
indicates that the function is used as part of the determination of the cost function but is
not directly minimized or maximized.

 addObjective

8-41



See Also

Topics
getObjectives
setObjectivesMode
getObjectivesMode
removeObjective

Introduced before R2006a

8 Writing User-Defined Optimizations

8-42



addOperatingPointSet
Add operating point set to optimization

Syntax
options = addOperatingPointSet(options, label, vars)

Description
A method of cgoptimoptions. options = addOperatingPointSet(options,
label, vars) Adds a placeholder for an additional operating point set to the
optimization.

The string label is used to refer to the constraint in CAGE. vars is a (1-by-N) cell
array of strings where N >= 1. Each element of vars is a label for a CAGE variable that
must appear in the operating point set that the user chooses.

See Also

Topics
getOperatingPointSets
setOperatingPointsMode
getOperatingPointsMode
removeOperatingPointSet

Introduced before R2006a

 addOperatingPointSet

8-43



addParameter
Add parameter to optimization

Syntax

options = addParameter(options, Label, Type, Value)
options = addParameter(options, Label, Type, Value, DisplayName)

Description
A method of cgoptimoptions.

options = addParameter(options, Label, Type, Value) adds a parameter to
the optimization. The string Label is used to refer to the parameter in the Evaluate
section of your script. You must specify a default value in Value. The table below lists
the parameter types that are supported along with how to specify their Type and Value.

Parameter Type Type Value
Real number 'number' Real scalar
Integer 'integer' Integer scalar
Enumerated list {'list', {list items}} One of {list items}
Boolean 'boolean' true or false
Note: The {list items} cell array for an enumerated list must be a cell array of
strings, one for each list member.

You can restrict a numeric parameter ('number' or 'integer') to a valid range. To do
this, specify a cell array for Type from the following:

Range type Type
Positive {TYPESTR, 'positive'}
Negative {TYPESTR, 'negative'}
User defined {TYPESTR, [a b]}

8 Writing User-Defined Optimizations

8-44



where TYPESTR is either 'number' or 'integer'. Note that the user-defined range type
strictly includes the limits, whereas the positive and negative range types exclude zero.
Furthermore, the default Value must lie in the specified range.

options = addParameter(options, Label, Type, Value, DisplayName)
allows you to add a more descriptive label for the parameter in the CAGE Optimization
Parameters GUI. Note that you still must refer to the parameter by label in the
Evaluate section of your script.

See Also

Topics
getParameters
getParam
removeParameter

Introduced before R2006a

 addParameter

8-45



evaluate
Evaluate optimization objectives and constraints

Syntax
Y = evaluate(optimstore, X)

Description
A method of cgoptimstore.

Evaluate optimization objectives and constraints.

Y = evaluate(optimstore, X) evaluates all of the optimization objectives and
constraints at the free variable values X. X is a (NPoints-by-NFreeVar) matrix where
NPoints is the number of points to be evaluated and NFreeVar is the number of free
variables in the optimization.

Evaluation over data sets is only supported when the free variables are scalar, that is,
you cannot perform evaluation over a data set for "sum" optimizations.

Examples
Y = evaluate(optimstore, X, itemnames)

evaluates the objectives and constraints specified in the cell array of strings, itemnames,
at the free variable values X. The values of the objectives and constraints are returned in
Y, which is of size (NPoints-by-NItems) where NItems is the number of objectives and
constraints listed in itemnames. Note that the evaluation of Y is scaled onto [-1 1].

Y = evaluate(optimstore, X, itemnames, datasetname) 

evaluates the specified objectives and constraints at the operating points in the data set
specified by the string datasetname. X must be a (Nrows-by-NfreeVar) matrix, where
Nrows is the number of rows in the data set.

8 Writing User-Defined Optimizations

8-46



Y = evaluate(optimstore, X, itemnames, datasetname, rowind) 

evaluates the specified objectives and constraints at the points of datasetname given by
rowind. X must be a (NRows-by-NFreeVar) matrix where NRows is the length of
ROWIND. ROWIND must be a list of integer indices in the range [1
NumRowsInDataset]. Y is a (Nrows-by-NItems) matrix.

See Also

Topics
nEvaluate
pevEvaluate

Introduced before R2006a

 evaluate

8-47



evaluateConstraint
Evaluate optimization constraints

Syntax
Y = evaluateConstraint(optimstore, X)

Description
A method of cgoptimstore.

Y = evaluateConstraint(optimstore, X) evaluates all of the optimization
constraints at the free variable values X. X must be a (NPoints-by-NFreeVar) matrix
where NPoints is the number of points to be evaluated and NFreeVar is the number of
free variables in the optimization. The values of the constraints are returned in Y, which
is of size (NPoints-by-NItems) where NItems is the number of constraints in the
optimization.

If you enable scaling of the optimization items, then the evaluation of Y is approximately
scaled onto [-1 1]. See “Scale Optimization” on page 6-70 for more information on scaling.

Negative values of Y imply X is feasible.

Examples
Y = evaluateConstraint(optimstore, X, itemnames)

evaluates the constraints specified in the cell array of strings, itemnames, at the free
variable values X. The values of the constraints are returned in Y, which is of size
(NPoints-by-NItems) where NItems is the number of objectives listed in itemnames.

[Y, YG] = evaluateConstraint(optimstore, X, itemnames)

also evaluates the gradient of the specified constraints in YG (if itemnames is not
specified, then the gradient of all constraints is returned). YG is of size NFreeVar-by-

8 Writing User-Defined Optimizations

8-48



NItems-by-NPoints, where NFreeVar is the number of free variables in the
optimization.

See Also

Topics
evaluateObjective
evaluateNonlcon

Introduced in R2006b

 evaluateConstraint

8-49



evaluateEqCon
Evaluate optimization nonlinear equality constraints

Syntax
Y = evaluateEqCon(optimstore, X)

Description
A method of cgoptimstore.

Y = evaluateEqCon(optimstore, X) evaluates all of the nonlinear equality
constraints in the optimization at the free variable values X. X must be a (NPoints-by-
NFreeVar) matrix where NPoints is the number of points to be evaluated and
NFreeVar is the number of free variables in the optimization. The values of the
constraints are returned in Y, which is of size (NPoints-by-NItems) where NItems is
the number of nonlinear equality constraints in the optimization.

If you enable scaling of the optimization items, then the evaluation of Y is approximately
scaled onto [-1 1]. See “Scale Optimization” on page 6-70 for more information on scaling.

Negative values of Y imply X is feasible.

See Also

Topics
evaluateIneqCon

Introduced in R2010b

8 Writing User-Defined Optimizations

8-50



evaluateIneqCon
Evaluate optimization nonlinear inequality constraints

Syntax
Y = evaluateIneqCon(optimstore, X)

Description
A method of cgoptimstore.

Y = evaluateIneqCon(optimstore, X) evaluates all of the nonlinear inequality
constraints in the optimization at the free variable values X. X must be a (NPoints-by-
NFreeVar) matrix where NPoints is the number of points to be evaluated and
NFreeVar is the number of free variables in the optimization. The values of the
constraints are returned in Y, which is of size (NPoints-by-NItems) where NItems is
the number of nonlinear inequality constraints in the optimization.

If you enable scaling of the optimization items, then the evaluation of Y is approximately
scaled onto [-1 1]. See “Scale Optimization” on page 6-70 for more information on scaling.

Negative values of Y imply X is feasible.

See Also

Topics
evaluateEqCon

Introduced in R2010b

 evaluateIneqCon

8-51



evaluateNonlcon
Evaluate optimization nonlinear constraints

Syntax
[varargout] = evaluateNonlcon(optimstore, X, ItemNames)

Description
Evaluate optimization nonlinear constraints. A method of cgoptimstore.

Y = evaluateNonlcon(optimstore, X) evaluates all of the nonlinear constraints in
the optimization at the free variable values X. X must be a (NPoints-by-NFreeVar)
matrix where NPoints is the number of points to be evaluated and NFreeVar is the
number of free variables in the optimization.

If you enable scaling of the optimization items, then the evaluation of Y is approximately
scaled onto [-1 1]. See “Scale Optimization” on page 6-70 for more information on scaling.

Y = evaluateNonlcon(optimstore, X, ItemNames) evaluates the nonlinear
constraints specified in the cell array of strings, ItemNames, at the free variable values
X. The values of the nonlinear constraints are returned in Y, which is of size (NPoints-
by-NItems) where NItems is the number of nonlinear constraints listed in ItemNames.

[Y, YG] = evaluateNonlcon(optimstore, X, ItemNames) also evaluates the
gradient of the specified constraints in YG (if ItemNames is not specified, then the
gradient of all constraints is returned). YG is of size NFreeVar-by-NItems-by-
NPoints, where NFreeVar is the number of free variables in the optimization.

See Also

Topics
evaluateConstraint
evaluateObjective

8 Writing User-Defined Optimizations

8-52



Introduced before R2006a

 evaluateNonlcon

8-53



evaluateObjective
Evaluate optimization objectives

Syntax
varargout = evaluateObjective(optimstore, X, ItemNames)

Description
Evaluate optimization objectives. A method of cgoptimstore.

Y = evaluateObjective(optimstore, X) evaluates all of the optimization
objectives at the free variable values X. X must be a (NPoints-by-NFreeVar) matrix
where NPoints is the number of points to be evaluated and NFreeVar is the number of
free variables in the optimization. The values of the objectives are returned in Y, which is
of size (NPoints-by-NItems) where NItems is the number of objectives in the
optimization.

If you enable scaling of the optimization items, then the evaluation of Y is approximately
scaled onto [-1 1]. See “Scale Optimization” on page 6-70 for more information on scaling.

Y = evaluateObjective(optimstore, X, ItemNames) evaluates the objectives
specified in the cell array of strings, ItemNames, at the free variable values X. The values
of the objectives are returned in Y, which is of size (NPoints-by-NItems) where
NItems is the number of objectives listed in ItemNames.

[Y, YG] = evaluateObjective(optimstore, X, ItemNames) also evaluates the
gradient of the specified objectives in YG (if ItemNames is not specified, then the gradient
of all objectives is returned). YG is of size NFreeVar-by-NItems-by-NPoints, where
NFreeVar is the number of free variables in the optimization.

8 Writing User-Defined Optimizations

8-54



See Also

Topics
evaluateNonlcon

Introduced before R2006a

 evaluateObjective

8-55



get
Get optimization properties

Syntax
V = get(optimstore, 'PropertyName') 

Description
Returns the value of the specified property in the optimization. A method of
cgoptimstore.

get(optimstore) displays all property names and a description of each property for
the OPTIMSTORE object.

S = get(optimstore) returns a structure where each field name is the name of a
property of OPTIMSTORE and each field contains the description of that property.

Note This method is obsolete. Use the GETXXX methods instead.

See Also

Topics
getA
getB

Introduced before R2006a

8 Writing User-Defined Optimizations

8-56



getA
Get linear inequality constraint matrix.

Syntax
A = getA(optimstore)

Description
Get the linear inequality constraint matrix. A method of cgoptimstore.

A = getA(optimstore) returns the linear inequality constraint matrix used in the
optimization. A is a (NLINCON-by-NFreeVar) matrix where NFreeVar is the number of
free variables in the optimization and NLINCON is the number of linear inequality
constraints.

The following code evaluates the linear inequality constraints in the optimization:

A = getA(optimstore);
b = getB(optimstore);
out = A*x - b;

where x is a column vector containing the current free variable values.

See Also

Topics
getB

Introduced before R2006a

 getA

8-57



getB
Get linear inequality constraint target values.

Syntax
B = getB(optimstore)

Description
Get the linear inequality constraint target values. A method of cgoptimstore.

B = getB(optimstore) returns the linear inequality constraint target values used in
the optimization. B is a (NLINCON-by-1) column vector where NLINCON is the number
of linear inequality constraints.

The following code evaluates the linear inequality constraints in the optimization:

A = getA(optimstore);
b = getB(optimstore);
out = A*x - b;

where x is a column vector containing the current free variable values.

See Also

Topics
getA

Introduced before R2006a

8 Writing User-Defined Optimizations

8-58



getConstraint
Return constraint labels

Syntax
conLabels = getConstraint(optimstore)

Description
Return the constraint labels. A method of cgoptimstore.

conLabels = getConstraint(optimstore) returns the labels for all the constraint
functions in optimization. These labels are the those found in the CAGE GUI for the
optimization constraints.

See Also

Topics
getNonlcon
getLcon

Introduced in R2007a

 getConstraint

8-59



getConstraints
Return information about all optimization constraints

Syntax
coninfo = getConstraints(obj)

Description
Return information about all optimization constraints. A method of cgoptimoptions.

coninfo = getConstraints(options) returns a structure array of information
regarding the optimization constraint functions. coninfo(i).label contains the label
for the i-th constraint. A string defining the type of the i-th constraint is stored in
coninfo(i).typestr. The constraint parameters are stored in coninfo(i).pars.

See Also

Topics
addModelConstraint
addLinearConstraint

Introduced before R2006a

8 Writing User-Defined Optimizations

8-60



getConstraintsMode
Return current usage of constraints

Syntax
mode = getConstraintsMode(options)

Description
Returns a string describing how the optimization makes constraints available to the
user. mode will be one of `any' or `fixed'.

See Also

Topics
setConstraintsMode

Introduced before R2006a

 getConstraintsMode

8-61



getDataset
Retrieve data from data set

Syntax
V = getDataset(optimstore, datasetName, inputNames)

Description
Returns required data from a named data set. A method of cgoptimstore.

PTS = getDataset(optimstore, datasetName) returns all the data from the
specified helper data set. If the data set cannot be found, data is returned as empty.

PTS = getDataset(optimstore, datasetName, inputNames) returns data from
the specified helper data set. Data is retrieved for the columns of the data set with names
that match those in inputNames. If the dataset cannot be found, data is returned as
empty.

Examples
V = getdataset(optimstore, 'myDS', {'speed', 'afr'})

returns a NPTS by 2 matrix, V.

NPTS is the number of rows in the operating point set labeled 'myDS', V(:, 1) is the
data for the variable labeled 'speed', V(:, 2) is the data for the variable labeled
'afr'.

See Also

Topics
addOperatingPointSet

8 Writing User-Defined Optimizations

8-62



Introduced before R2006a

 getDataset

8-63



getDescription
Get current description for optimization function

Syntax
desc = getDescription(options)

Description
A method of cgoptimoptions. Returns the description, desc, of the user-defined
optimization function.

See Also

Topics
setDescription

Introduced before R2006a

8 Writing User-Defined Optimizations

8-64



getEnabled
Get current enabled status for optimization

Syntax
en=getEnabled(options)

Description
A method of cgoptimoptions. Returns whether this user-defined optimization is
available to be run. en is set to true or false. When an optimization is disabled, the user
can still register it with CAGE but is not allowed to create new optimizations using it.

See Also

Topics
setEnabled

Introduced before R2006a

 getEnabled

8-65



getFreeVariables
Get optimal values of free variables

Syntax
data = getFreeVariables(obj)

Description
A method of cgoptimstore. Get the optimal values of the free variables.

Results = getFreeVariables(obj) returns the matrix of optimal values that has
been set for the free variables. Results is a NSOL by NFREEVAR matrix containing
many solutions for the optimal values of the free variables. NSOL is the number of
solutions and NFREEVAR is the number of free variables.

See Also

Topics
setFreeVariables

Introduced in R2013a

8 Writing User-Defined Optimizations

8-66



getFreeVariables
Return optimization free variable labels

Syntax
labels=getFreeVariables(options)

Description
A method of cgoptimoptions. Returns the current placeholder labels for the free
variables in the optimization. The labels are returned in a (1-by-NFreeVar) cell array,
labels, where NFreeVar is the number of free variables that have been added to the
optimization.

See Also

Topics
addFreeVariable
setFreeVariablesMode
getFreeVariablesMode

Introduced before R2006a

 getFreeVariables

8-67



getFreeVariablesMode
Return current usage of free variables

Syntax
mode= getFreeVariablesMode(options)

Description
A method of cgoptimoptions. Returns a string describing how the optimization makes
free variables available to the user. mode is set to any or fixed.

See Also

Topics
setFreeVariablesMode

Introduced before R2006a

8 Writing User-Defined Optimizations

8-68



getInitFreeVal
Get initial free values for optimization

Syntax
x0 = getInitFreeVal(cos)

Description
Get the initial free values for the optimization. A method of cgoptimstore.

x0 = getInitFreeVal(optimstore) returns the initial values of the free variables
used in the optimization. X0 is a (1-by-NFreeVar) matrix where NFreeVar is the
number of free variables in the optimization.

See Also

Topics
setFreeVariablesMode

Introduced before R2006a

 getInitFreeVal

8-69



getLB
Get free variable lower bounds

Syntax
LB = getLB(optimstore)

Description
Get the free variable lower bounds. A method of cgoptimstore.

LB = getLB(optimstore) returns the free variable lower bounds used in the
optimization. LB is a (1-by-NFreeVar) vector where NFreeVar is the number of free
variables in the optimization.

See Also

Topics
getUB

Introduced before R2006a

8 Writing User-Defined Optimizations

8-70



getLcon
Return linear constraint labels

Syntax
conLabels = getLcon(optimstore)

Description
Return the linear constraint labels. A method of cgoptimstore.

conLabels = getLcon(optimstore) returns the labels for the linear constraints in
the optimization. These labels are those found in the CAGE GUI for the optimization
linear constraints.

See Also

Topics
getObjectives
getNumNonlcon

Introduced before R2006a

 getLcon

8-71



getLinearConstraints
Get linear constraint placeholder information

Syntax
out = getLinearConstraints(options)

Description
A method of cgoptimoptions. Returns a structure array of information regarding the
linear constraints in the optimization. The structure has three fields: label, A, and b.
See the help for addLinearConstraint for more information on these fields.

See Also

Topics
addLinearConstraint
setConstraintsMode

Introduced before R2006a

8 Writing User-Defined Optimizations

8-72



getModelConstraints
Get model constraint placeholder information

Syntax
out = getModelConstraints (options)

Description
A method of cgoptimoptions. Returns a structure array of information regarding the
model constraints in the optimization. The structure has three fields: label,
boundtype, and bound. See the help for addModelConstraint for more information on
these fields.

See Also

Topics
addModelConstraint
setConstraintsMode

Introduced before R2006a

 getModelConstraints

8-73



getName
Get current name label for optimization function

Syntax
name=getName(options)

Description
A method of cgoptimoptions. Returns the current name label, name, for the user-
defined optimization function.

See Also

Topics
setName

Introduced before R2006a

8 Writing User-Defined Optimizations

8-74



getNonlcon
Get nonlinear constraint information

Syntax
out = getNonlcon(obj)

Description
Get nonlinear constraint information. A method of cgoptimoptions.

out = getNonlinearConstraints(options) returns a structure array of
information regarding the nonlinear constraints in the optimization. The structure has
three fields: label, type and pars. The label field contains the label used for the
constraint in the CAGE GUI. The typestr field contains constraint type selected by the
user. The pars field contains any parameters associated with the constraint.

See Also

Topics
getModelConstraints
getLinearConstraints

Introduced before R2006a

 getNonlcon

8-75



getNumConstraint
Return number of constraints per label

Syntax
ncon = getNumConstraint(optimstore)

ncon = getNumConstraint(optimstore, conLabels)

Description
Return the number of constraints per label. A method of cgoptimstore.

ncon = getNumConstraint(optimstore) returns the number of constraints that will
be returned from an evaluation of each labeled constraint. For example, consider an
optimization that has a sum constraint over a set of points, S, and a point constraint to
be evaluated at each member of S. NCON will return [1 r], where r is the number of
points in S.

ncon = getNumConstraint(optimstore, conLabels) returns the number of
constraints from an evaluation of the defined constraints.

See Also

Topics
getNumNonlcon

Introduced in R2007a

8 Writing User-Defined Optimizations

8-76



getNumConstraintLabels
Return number of constraint labels

Syntax
out = getNumConstraintLabels(optimstore)

Description
Return the number of constraint labels. A method of cgoptimstore.

out = getNumConstraintLabels(optimstore) returns the number of constraint
labels in the optimization.

See Also

Topics
getNumObjectiveLabels

Introduced in R2007a

 getNumConstraintLabels

8-77



getNumLcon
Return number of linear constraints per label

Syntax
ncon = getNumLcon(optimstore)

ncon = getNumLcon(optimstore, conLabels)

Description
Return the number of linear constraints per label. A method of cgoptimstore.

ncon = getNumLcon(optimstore) returns the number of constraints that will be
returned from an evaluation of each linear constraint.

ncon = getNumNonlcon(optimstore, conLabels) returns the number of
constraints from an evaluation of the defined constraints.

See Also

Topics
getNumNonlcon
getNumConstraint

Introduced in R2007a

8 Writing User-Defined Optimizations

8-78



getNumLconLabels
Return number of linear constraint labels

Syntax
numlab = getNumLconLabels(optimstore)

Description
Return the number of linear constraint labels. A method of cgoptimstore.

numlab = getNumLconLabels(optimstore) returns the number of linear constraint
labels in the optimization.

See Also

Topics
getNumConstraintLabels

Introduced in R2007a

 getNumLconLabels

8-79



getNumNonlcon
Return number of nonlinear constraints per label

Syntax
ncon = getNumNonlcon(optimstore)

ncon = getNumNonlcon(optimstore, conLabels)

Description
Return the number of nonlinear constraints per label. A method of cgoptimstore.

ncon = getNumNonlcon(optimstore) returns the number of constraints that will be
returned from an evaluation of each labeled constraint. For example, consider an
optimization that has a sum constraint over a set of points, S, and a point constraint to
be evaluated at each member of S. NCON will return [1 r], where r is the number of
points in S.

ncon = getNumNonlcon(optimstore, conLabels) returns the number of
constraints type for the defined constraints.

See Also

Topics
getConstraints
getNumNonlconLabels

Introduced before R2006a

8 Writing User-Defined Optimizations

8-80



getNumNonlconLabels
Return number of nonlinear constraint labels

Syntax
numlab = getNumNonlconLabels(optimstore)

Description
Returns the number of nonlinear constraint labels in the optimization. A method of
cgoptimstore.

See Also

Topics
getNumObjectiveLabels

Introduced before R2006a

 getNumNonlconLabels

8-81



getNumObjectiveLabels
Return number of objective labels

Syntax
numlab = getNumObjectiveLabels(optimstore)

Description
Returns the number of objective labels in the optimization. A method of cgoptimstore.

See Also

Topics
getNumNonlconLabels

Introduced before R2006a

8 Writing User-Defined Optimizations

8-82



getNumObjectives
Return number of objectives per label

Syntax
nobj = getNumObjectives(optimstore)

nobj = getNumObjectives(optimstore, objlabels)

Description
Return the number of objectives per label. A method of cgoptimstore.

nobj = getNumObjectives(optimstore) returns the number of objectives that will
be returned from an evaluation of each objective label. For example, consider an
optimization that has a sum objective over a set of points, S, and a point objective to be
evaluated at each member of S. nobj will return [1 r], where r is the number of points in
S.

nobj = getNumObjectives(optimstore, objlabels) returns the number of
objectives that will be returned for the defined objective labels.

See Also

Topics
getObjectives
getObjectiveType

Introduced before R2006a

 getNumObjectives

8-83



getNumRowsInDataset
Get number of rows in optimization data set

Syntax
npts = getNumrowsInDataset(optimstore, datasetName)

Description
Returns the number of rows in the named data set. A method of cgoptimstore.

Introduced before R2006a

8 Writing User-Defined Optimizations

8-84



getObjectives
Return objective labels for optimization

Syntax
objLabels = getObjectives(optimstore)

Description
A method of cgoptimstore. Returns the labels for the objective functions in
optimization. These labels are those found in the CAGE GUI for the optimization
objectives.

See Also

Topics
getLcon

Introduced in R2013a

 getObjectives

8-85



getObjectives
Return information about optimization objectives

Syntax
objinfo=getObjectives(options)

Description
A method of cgoptimoptions. Returns a structure array of information regarding the
optimization objective functions. objinfo(i).label contains the label for the ith

objective. A string defining the type of the ith objective (max, min, min/max, or helper)
is stored in objinfo(i).type.

See Also

Topics
addObjective
setObjectivesMode
getObjectivesMode

Introduced before R2006a

8 Writing User-Defined Optimizations

8-86



getObjectivesMode
Return current usage of objective functions

Syntax
mode = getObjectivesMode(options)

Description
A method of cgoptimoptions. Returns a string describing how the optimization makes
objectives available to the user. mode will be one of `multiple', `any', or `fixed'.

See Also

Topics
setObjectivesMode

Introduced before R2006a

 getObjectivesMode

8-87



getOperatingPointSets
Return information about optimization operating point sets

Syntax
getOperatingPointSets(options)

Description
A method of cgoptimoptions. Returns a structure array of information regarding the
optimization operating point sets. The structure has two fields, label and vars. See the
help for addOperatingPointSet for more information on these fields.

See Also

Topics
addOperatingPointSet
setOperatingPointsMode
getOperatingPointsMode

Introduced before R2006a

8 Writing User-Defined Optimizations

8-88



getOperatingPointsMode
Return current usage of operating point sets

Syntax
mode=getOperatingPointsMode(options)

Description
A method of cgoptimoptions. Returns a string describing how the optimization makes
operating point sets available to the user. mode will be one of `default', `fixed', or
`any'.

See Also

Topics
setOperatingPointsMode

Introduced before R2006a

 getOperatingPointsMode

8-89



getObjectiveType
Return objective type

Syntax
objType = getObjectiveType(optimstore)

objType = getObjectiveType(optimstore, objLabels)

Description
Return the objective type. A method of cgoptimstore.

objType = getObjectiveType(optimstore) returns the objective type of all the
objectives in the optimization. A 1-by-NOBJ cell array is returned, each element being
'min', 'max' or 'helper'.

objType = getObjectiveType(optimstore, objLabels) returns the objective
type for the defined objectives.

See Also

Topics
getObjectives

Introduced before R2006a

8 Writing User-Defined Optimizations

8-90



getOptimOptions
Retrieve optimization options object

Syntax
options = getOptimOptions(optimstore)

Description
A method of cgoptimstore. Returns the optimization configuration object. Information
about the optimization set up can be retrieved from this object.

Introduced before R2006a

 getOptimOptions

8-91



getOutputInfo
Get output information for optimization

Syntax
[exitflag, msg, stats] = getOutputInfo(cos)

Description
Get output information for the optimization. A method of cgoptimstore.

[exitflag, termMsg] = getOutputInfo(optimstore) returns diagnostic output
information from optimstore. exitflag indicates the success (exitflag > 0) or
failure (exitflag <= 0) of the current optimization run. exitflag may also give some
indication why the optimization terminated. Any termination message set by the
optimization can be retrieved from termMsg.

[exitflag, termMsg, output] = getOutputInfo(optimstore) returns in
addition a structure of algorithm-specific information in output. For output to be non-
empty, the user must create it in their algorithm. See the worked example and tutorial
for more information on how to create output structures.

Introduced before R2006a

8 Writing User-Defined Optimizations

8-92



getParam
Get optimization parameter

Syntax
property_value = getParam(obj, propertyname)

Description
Get optimization parameter. A method of cgoptimstore.

V = getParam(optimstore, 'Parameter_name') returns the value of the specified
parameter in the optimization. These optimization parameters must be set up in the
Options section of the user-defined script.

See Also

Topics
addParameter
“Example User-Defined Optimization” on page 8-9

Introduced before R2006a

 getParam

8-93



getParameters
Return information about optimization parameters

Syntax
getParameters(options)

Description
A method of cgoptimoptions. Returns a structure array containing information about
the parameters that are defined for the optimization. Parameter information is returned
in a structure with fields label, typestr, value, and displayname. See the help for
addParameter for more information on these fields.

See Also

Topics
addParameter
getParam

Introduced before R2006a

8 Writing User-Defined Optimizations

8-94



getRunInterfaceVersion
Get preferred interface to provide evaluation function

Syntax
ver = getRunInterfaceVersion(obj)

Description
Get the preferred interface to provide the evaluation function. A method of
cgoptimoptions.

ver = getRunInterfaceVersion(options) returns the Model-Based Calibration
Toolbox product Version that is emulated when the optimization function's evaluate
option is called. If ver is set to 2, the interface provided by Model-Based Calibration
Toolbox Version 2 software is activated. If ver is set to 3, the new interface, which
Model-Based Calibration Toolbox Version 3 software defines, is used.

See Also

Topics
setRunInterfaceVersion

Introduced before R2006a

 getRunInterfaceVersion

8-95



getStopState
Current stop state for optimization

Syntax
stop= getStopState(opt)

Description
A method of cgoptimstore. stop= getStopState(optimstore) returns the current
stop state for the optimization. The stop state could be set by the Stop button on the
Running Optimization progress bar or via a call to setStopState within a script.

See Also

Topics
setStopState

Introduced before R2006a

8 Writing User-Defined Optimizations

8-96



getUB
Get free variable upper bounds

Syntax
UB = getUB(optimstore)

Description
A method of cgoptimstore. Returns the free variable upper bounds used in the
optimization. UB is a (1-by-NFreeVar) vector where NFreeVar is the number of free
variables in the optimization.

See Also

Topics
getLB

Introduced before R2006a

 getUB

8-97



gridEvaluate
Grid evaluation of optimization objectives and constraints

Syntax
Y = gridEvaluate(optimstore, X)

Y = gridEvaluate(optimstore, X, objconname)

Y = gridEvaluate(optimstore, X, objconname, datasetname)

Y = gridEvaluate(optimstore, X, objconname, datasetname, rowind)

Description
A method of cgoptimstore.

Y = gridEvaluate(optimstore, X) evaluates all the objectives and constraints at
the points X for the current run. This call produces identical results to the equivalent call
to cgoptimstore/evaluate.

Y = gridEvaluate(optimstore, X, objconname) evaluates the objectives/
constraints specified in the cell array objconname as described above.

Y = gridEvaluate(optimstore, X, objconname, datasetname) evaluates all
the objectives and constraints at all combinations of the points in datasetname with X.
The return matrix, Y, is of size SIZE(X,1)-by-(NOBJ+NCON)-by-NPTS, where NOBJ is
the number of objectives, NCON is the number of constraints and NPTS is the number of
rows in P. Further, Y(I, J, K) is the value of the J-th objective/constraint at X(I, :)
and P(K, :). Y is scaled on [-1 1].

Examples
Objectives : O1, O2

8 Writing User-Defined Optimizations

8-98



Constraints : C1, C2

Primary data set:
A B
4 5
1 3

Free variables:

X1 X2 X3
2 4 8
1 9 3
6 2 7
X

In this case, the following command

Y = gridEvaluate(optimstore, X)

evaluates objectives and constraints at the following points:
A B X1 X2 X3
4 5 2 4 8
4 5 1 9 3
4 5 6 2 7
1 3 2 4 8
1 3 1 9 3
1 3 6 2 7

Y is a 3-by-4-by-2 matrix where

Y(:, 1, 1) = Values of 01 at A = 4, B = 5

Y(:, 2, 1) = Values of 02 at A = 4, B = 5

Y(:, 3, 1) = Values of C1 at A = 4, B = 5

Y(:, 4, 1) = Values of C2 at A = 4, B = 5

 gridEvaluate

8-99



Y(:, 1, 2) = Values of 01 at A = 1, B = 3

Y(:, 2, 2) = Values of 02 at A = 1, B = 3

Y(:, 3, 2) = Values of C1 at A = 1, B = 3

Y(:, 4, 2) = Values of C2 at A = 1, B = 3

Y = gridEvaluate(optimstore, X, objconname, datasetname, rowind)

evaluates the specified objectives/constraints at the points of datasetname given by
rowind as described above. Y is a length(rowind) by length(objconname) by npts
matrix.

See Also

Topics
evaluate

Introduced before R2006a

8 Writing User-Defined Optimizations

8-100



gridPevEvaluate
Grid evaluation of prediction error variance (PEV)

Syntax
[y, ysums] = gridpevevaluate(optimstore, X)

Y = gridpevevaluate(optimstore, X, objconname)

Y = gridpevevaluate(optimstore, X, objconname, datasetname)

Y = gridpevevaluate(optimstore, X, objconname, datasetname, rowind)

Description

Warning The evaluation of PEV is no longer supported in cgoptimstore and this
method will return PEV values of zero (as detailed below) if called.

A method of cgoptimstore.

Y = gridpevevaluate(optimstore, X) produces identical results to the equivalent
call to cgoptimstore/pevEvaluate

Y = gridpevevaluate(optimstore, X, objconname) returns PEV values of zero
for the objectives/constraints specified in the cell array objconname.

Y = gridpevevaluate(optimstore, X, objconname, datasetname) returns
PEV values of zero for the specified objectives/constraints. The return matrix, Y, is of size
SIZE(X,1)-by-(NOBJCON)-by-NPTS, where NOBJCON is the number of specified
objectives/constraints and NPTS is the number of rows in P.

 gridPevEvaluate

8-101



Y = gridpevevaluate(optimstore, X, objconname, datasetname, rowind)
returns PEV values of zero for the specified objectives/constraints. Y is a
LENGTH(ROWIND) by LENGTH(OBJCONNAME) by NPTS matrix.

See Also

Topics
pevEvaluate

Introduced before R2006a

8 Writing User-Defined Optimizations

8-102



isScalarFreeVariables
Return whether all free variables are scalars

Syntax
stat = isScalarFreeVariables(optimstore)

Description
Return whether all the free variables are scalars. A method of cgoptimstore.

stat = isScalarFreeVariables(optimstore) returns TRUE if all the free variables
are scalars and FALSE otherwise.

Introduced before R2006a

 isScalarFreeVariables

8-103



nEvaluate
Natural evaluation of optimization objectives and constraints

Syntax
[y, ysums] = nEvaluate(optimstore, x)

Y = nEvaluate(optimstore, x, itemNames)

Y = nEvaluate(optimstore, x, itemNames, datasetName)

Y = nEvaluate(optimstore, x, itemNames, datasetName, rowind)

Description
Natural evaluation of optimization objectives and constraints. A method of
cgoptimstore.

Y = nEvaluate(optimstore, x) evaluates the raw values of all of the optimization
objectives and constraints at the free variable values X. X is a (NPoints-by-NFreeVar)
matrix where NPoints is the number of points to be evaluated and NFreeVar is the
number of free variables in the optimization.

Y = nEvaluate(optimstore, x, itemNames) evaluates the raw values of the
objectives and constraints specified in the cell array of strings, itemNames, at the free
variable values X. The values of the objectives and constraints are returned in Y, which is
of size (NPoints-by-NItems) where NItems is the number of objectives and
constraints listed in itemNames.

Y = nEvaluate(optimstore, x, itemNames, datasetName) evaluates the
specified objectives and constraints at the operating points in the data set specified by
the string datasetName.

Y = nEvaluate(optimstore, x, itemNames, datasetName, rowind) evaluates
the specified objectives and constraints at the points of datasetName given by rowind. X

8 Writing User-Defined Optimizations

8-104



must be a (NRows-by-NFreeVar) matrix where NRows is the length of rowind. rowind
must be a list of integer indices in the range [1 NumRowsInDataset]. Y is a (Nrows-
by-NItems) matrix.

See Also

Topics
evaluate

Introduced before R2006a

 nEvaluate

8-105



nEvaluateConstraint
Natural evaluation of optimization constraints

Syntax
Y = nEvaluateConstraint(optimstore, x)

Y = nEvaluateConstraint(optimstore, x, itemNames)

Description
A method of cgoptimstore.

Y = nEvaluateConstraint(optimstore, X) evaluates all of the optimization
constraints at the free variable values x. X must be a (NPoints-by-NFreeVar) matrix
where NPoints is the number of points to be evaluated and NFreeVar is the number of
free variables in the optimization. The raw values of the constraints are returned in Y,
which is of size (NPoints-by-NItems) where NItems is the number of constraints in
the optimization.

Y = nEvaluateConstraint(optimstore, X, itemNames) evaluates the constraints
specified in the cell array of strings, itemNames, at the free variable values X. The raw
values of the constraints are returned in Y, which is of size (NPoints-by-NItems)
where NItems is the number of constraints listed in itemNames.

See Also

Topics
evaluateObjective
evaluateNonlcon

Introduced in R2006b

8 Writing User-Defined Optimizations

8-106



nEvaluateNonlcon
Natural evaluation of optimization nonlinear constraints

Syntax
y = nEvaluateNonlcon(optimstore, x)

Y = nEvaluateNonlcon(optimstore, x, itemNames)

Description
Natural evaluation of optimization nonlinear constraints. A method of cgoptimstore.

Y = nEvaluateNonlcon(optimstore, x) evaluates all of the optimization nonlinear
constraints at the free variable values X. X must be a (NPoints-by-NFreeVar) matrix
where NPoints is the number of points to be evaluated and NFreeVar is the number of
free variables in the optimization. The raw values of the constraints are returned in Y,
which is of size (NPoints-by-NItems) where NItems is the number of nonlinear
constraints in the optimization.

Y = nEvaluateNonlcon(optimstore, x, itemNames) evaluates the nonlinear
constraints specified in the cell array of strings, itemNames, at the free variable values
X. The raw values of the constraints are returned in Y, which is of size (NPoints-by-
NItems) where NItems is the number of nonlinear constraints listed in itemNames.

See Also

Topics
evaluateObjective
evaluateNonlcon

Introduced before R2006a

 nEvaluateNonlcon

8-107



nEvaluateObjective
Natural evaluation of optimization objectives

Syntax
y = nEvaluateObjective(optimstore, x)

Y = nEvaluateObjective(optimstore, x, itemNames)

Description
Natural evaluation of optimization objectives. A method of cgoptimstore.

Y = nEvaluateObjective(optimstore, x) evaluates all of the optimization
objectives at the free variable values X. X must be a (NPoints-by-NFreeVar) matrix
where NPoints is the number of points to be evaluated and NFreeVar is the number of
free variables in the optimization. The raw values of the objectives are returned in Y,
which is of size (NPoints-by-NItems) where NItems is the number of objectives in the
optimization.

Y = nEvaluateObjective(optimstore, x, itemNames) evaluates the objectives
specified in the cell array of strings, itemNames, at the free variable values X. The raw
values of the objectives are returned in Y, which is of size (NPoints-by-NItems) where
NItems is the number of objectives listed in itemNames.

See Also

Topics
evaluateObjective
evaluateNonlcon

Introduced before R2006a

8 Writing User-Defined Optimizations

8-108



optimset
Create/alter optimization OPTIONS structure

Syntax
options = optimset(optimstore)
o

options = optimset(optimfunction, optimstore)

options = optimset(..., 'param1',value1,...)

Description
Create/alter optimization OPTIONS structure. A method of cgoptimstore.

options = optimset(optimstore) creates an optimization options structure that
can be used with Optimization Toolbox functions. with the named parameters altered
with the specified values. Any parameters specified in the optimization that match (by
name) those in the default options structure are copied into options.

options = optimset(oldopts, optimstore) creates a copy of oldopts and copies
matching parameters from the optimization into it.

options = optimset(optimfunction, optimstore) creates an options structure
with all the parameter names and default values relevant to the optimization function
named in optimfunction and then copies matching parameters from the optimization
into it.

options = optimset(..., 'param1',value1,...) sets the additional named
parameters to the specified values.

 optimset

8-109



See Also

Topics
getParam

Introduced before R2006a

8 Writing User-Defined Optimizations

8-110



pevEvaluate
Evaluate prediction error variance (PEV)

Syntax
Y = pevEvaluate(optimstore, X)

Description

Warning The evaluation of PEV is no longer supported in cgoptimstore and this
method will return PEV values of zero (as detailed below) if called.

A method of cgoptimstore.

Y = pevEvaluate(optimstore, X, itemnames)

returns PEV values of zero for objectives/constraints at the free variable values X. X is a
(NPoints-by-NFreeVar) matrix where NPoints is the number of points to be
evaluated and NFreeVar is the number of free variables in the optimization.

Y = pevevaluate(optimstore, X, objconname, datasetname)

returns PEV values of zero for the objectives/constraints at the operating points in the
data set specified by the string datasetname.

Y = pevevaluate(optimstore, X, objconname, datasetname, rowind)

returns PEV values of zero for the specified objectives/constraints at the points of
datasetname given by rowind. X must be a (NRows-by-NFreeVar) matrix where
NRows is the length of rowind. rowind must be a list of integer indices in the range [1
NumRowsInDataset].Y is a (Nrows-by-NItems) matrix.

 pevEvaluate

8-111



See Also

Topics
gridPevEvaluate

Introduced before R2006a

8 Writing User-Defined Optimizations

8-112



removeConstraint
Remove constraint from optimization

Syntax
obj = removeConstraint(obj, sLabel)

Description
Remove a constraint from the optimization. A method of cgoptimoptions.

obj = removeConstraint(options, label) removes the placeholder for the
constraint referred to by the string label.

See Also

Topics
getModelConstraints
getLinearConstraints
addModelConstraint
addLinearConstraint

Introduced before R2006a

 removeConstraint

8-113



removeFreeVariable
Remove free variable from optimization

Syntax
obj = removeFreeVariable(obj, sLabel)

Description
Remove a free variable from the optimization. A method of cgoptimoptions.

options = removeFreeVariable(options, label) removes the placeholder for the
free variable referred to by the string label.

See Also

Topics
getFreeVariables
addFreeVariable

Introduced before R2006a

8 Writing User-Defined Optimizations

8-114



removeObjective
Remove objective from optimization

Syntax
obj = removeObjective(obj, sLabel)

Description
Remove an objective from the optimization. A method of cgoptimoptions.

options = removeObjective(options, label) removes the placeholder for the
objective referred to by the string label.

See Also

Topics
getObjectives
addObjective

Introduced before R2006a

 removeObjective

8-115



removeOperatingPointSet
Remove operating point set from optimization

Syntax
obj = removeOperatingPointSet(obj, sLabel)

Description
Remove an operating point set from the optimization. A method of cgoptimoptions.

options = removeOperatingPointSet(options, label) removes the placeholder
for the operating point set referred to by the string label.

See Also

Topics
getOperatingPointSets
addOperatingPointSet

Introduced before R2006a

8 Writing User-Defined Optimizations

8-116



removeParameter
Remove parameter from optimization

Syntax
obj = removeParameter(obj, sLabel)

Description
Remove a parameter from the optimization. A method of cgoptimoptions.

Removes the placeholder for the parameter referred to by the string label.

See Also

Topics
getParameters
addParameter

Introduced before R2006a

 removeParameter

8-117



setConstraintsMode
Set how optimization constraints are to be used

Syntax
options=setConstraintsMode(options, modestr)

Description
A method of cgoptimoptions. Sets the mode that governs how the user can set up
constraints for the optimization in CAGE.

When modestr = any, the user can add any number of constraints.

When modestr = fixed, the user can only edit the constraints that are added by the
user-defined optimization function.

See Also

Topics
getConstraintsMode
addModelConstraint
addLinearConstraint

Introduced before R2006a

8 Writing User-Defined Optimizations

8-118



setDescription
Provide description for optimization function

Syntax
options=setDescription(options, desc)

Description
A method of cgoptimoptions. Sets the description for the optimization object to be the
string desc.

See Also

Topics
getDescription

Introduced before R2006a

 setDescription

8-119



setEnabled
Set enabled status for optimization function

Syntax
options = setEnabled(options, status)

Description
A method of cgoptimoptions. Sets the optimization function enabled status. status
must be true or false. When an optimization is disabled, you can still register it with
CAGE but are not allowed to create new optimizations using it.

See Also

Topics
getEnabled

Introduced before R2006a

8 Writing User-Defined Optimizations

8-120



setExitStatus
Set exit status information for optimization

Syntax
optimstore = setExitStatus(optimstore, exitflag, termmsg)

Description
Set exit status information for the optimization. A method of cgoptimstore.

optimstore = setExitStatus(optimstore, exitflag, termmsg) sets
termination status information in the optimstore. exitflag is an integer which
determines whether the optimization has terminated successfully. A value of exitflag
> 0 indicates success, and exitflag <=0 indicates failure. In any event, a termination
message can be passed back to the optimization through termmsg.

See Also

Topics
“Example User-Defined Optimization” on page 8-9

Introduced before R2006a

 setExitStatus

8-121



setFreeVariables
Set optimal values of free variables

Syntax
OUT = setFreeVariables(optimstore, results)

Description
Sets the optimal values of the free variables, as returned by the optimization, into the
optimstore. A method of cgoptimstore.

results is a npts by nfreevar matrix containing the optimal values of the free
variables. nsol is the number of solutions and nfreevar is the number of free variables.

Note This function must be called at the end of the optimization for the optimal values to
be stored.

See Also

Topics
getFreeVariables

Introduced before R2006a

8 Writing User-Defined Optimizations

8-122



setFreeVariablesMode
Set how optimization free variables are used

Syntax
options = setFreeVariablesMode(options, modestr)

Description
A method of cgoptimoptions. Sets the mode that governs how the user is allowed to set
up free variables for the optimization in the CAGE GUI.

When modestr = 'any', the user is allowed to add any number of free variables.

When modestr = 'fixed', the user is only allowed to use the number of free variables
that are added by the user-defined optimization function.

See Also

Topics
getFreeVariablesMode
addFreeVariable

Introduced before R2006a

 setFreeVariablesMode

8-123



setName
Provide name label for optimization function

Syntax
options = setName(options, name)

Description
A method of cgoptimoptions. Sets the name label for the optimization object to be the
string name.

See Also

Topics
getName

Introduced before R2006a

8 Writing User-Defined Optimizations

8-124



setObjectivesMode
Set how optimization objective functions are used

Syntax
options = setObjectivesMode(options, modestr)

Description
A method of cgoptimoptions. Sets the mode that governs whether the user is allowed
to set up objectives for the optimization in the CAGE GUI.

When modestr = 'any', the user is allowed to add any number of objectives.

When modestr = 'fixed', the user is only allowed to edit the objectives that are added
by the user-defined optimization function.

When modestr = 'multiple', the user is only allowed to run the optimization if he or
she has defined two or more objectives.

See Also

Topics
getObjectivesMode
addObjective

Introduced before R2006a

 setObjectivesMode

8-125



setOperatingPointsMode
Set how optimization operating point sets are used

Syntax
options = setOperatingPointsMode(options, modestr)

Description
A method of cgoptimoptions. Sets the mode that governs how the user is allowed to set
up operating point sets for the optimization in CAGE.

When modestr = 'any', the user is allowed to add any number of operating point sets.

When modestr = 'default', the user is allowed to optionally define a single operating
point set to run the optimization over.

When modestr = 'fixed', the number of operating point sets required can be fixed by
the optimization function and the user is not allowed to add or remove any using the
CAGE GUI.

See Also

Topics
getOperatingPointsMode
addOperatingPointSet

Introduced before R2006a

8 Writing User-Defined Optimizations

8-126



setOutput
Set diagnostic information for optimization

Syntax
optimstore = setOutput(optimstore, OUTPUT)

Description
Set diagnostic information for the optimization. A method of cgoptimstore.

optimstore = setOutput(optimstore, OUTPUT) sets diagnostic information for the
optimization in optimstore. Any diagnostic information is passed to optimstore
through the structure, OUTPUT. See the worked example for an example of creating an
OUTPUT structure.

See Also

Topics
“Example User-Defined Optimization” on page 8-9

Introduced before R2006a

 setOutput

8-127



setOutputInfo
Set output information for optimization

Syntax
optimstore = setOutputInfo (optimstore, exitflag, termmsg, output)

Description
Sets output information for the optimization in optimstore. A method of
cgoptimstore.

The following information is set:

• exitflag: integer value status flag indicating why the optimization has terminated.
exitflag > 0 implies that the optimization has terminated successfully.

• termmsg: Message that is displayed at termination of algorithm. Normally used for
error messages.

• output: Structure of algorithm statistics for the optimization.

Note This method is obsolete. Use cgoptimstore/setExitStatus and
cgoptimstore/setOutput instead.

See Also

Topics
setExitStatus
setOutput

Introduced before R2006a

8 Writing User-Defined Optimizations

8-128



setRunInterfaceVersion
Get preferred interface to provide evaluation function

Syntax
obj = setRunInterfaceVersion(obj, ver)

Description
Set the preferred interface to provide the evaluation function. A method of
cgoptimoptions.

Sets the Model-Based Calibration Toolbox product Version that is emulated when the
optimization function's evaluate option is called. If ver is set to 2, the interface provided
by Model-Based Calibration Toolbox Version 2 software is activated. If ver is set to 3, the
new interface, which Model-Based Calibration Toolbox Version 3 software defines, will be
used.

The interface version that the current version of the Model-Based Calibration Toolbox
product runs is superior in its capabilities, however it does contains some backwards
incompatibilities with the interface used in version 2. You can use this function in old
Model-Based Calibration Toolbox optimization files that fail to work with the newer
interface.

See Also

Topics
getRunInterfaceVersion

Introduced before R2006a

 setRunInterfaceVersion

8-129



setStopState
Set current stop state for optimization

Syntax
setStopState(opt,stop)

Description
Set current stop state for optimization. A method of cgoptimstore.

stop = setStopState(optimstore,stop) sets the current stop state (TRUE or
FALSE) for the optimization. Note that this command does not stop an optimization, the
optimization script must do this.

See Also

Topics
getStopState

Introduced before R2006a

8 Writing User-Defined Optimizations

8-130



Data Sets

This section includes the following topics:

• “Use Data Sets Views” on page 9-2
• “Set Up Data Sets” on page 9-4
• “View Data in a Table” on page 9-13
• “Plot Outputs” on page 9-15
• “Use Color to Display Information” on page 9-18
• “Link Factors in a Data Set” on page 9-22
• “Assign Columns of Data” on page 9-24
• “Manipulate Models in Data Set View” on page 9-25
• “Fill Tables from Experimental Data” on page 9-26
• “Export Data Sets” on page 9-32

9



Use Data Sets Views

You can use the Data Set view for these main functions:

• Validating calibrations with experimental data
• Filling tables by reference to a set of experimental data
• Constructing operating point sets for running optimizations
• Investigating optimization results and using them to fill tables

For worked examples about data sets, see:

Data Sets consists of four views. These views display different aspects of the data set.
Each view is accessible from the View menu or by clicking the appropriate button on the
toolbar.
Factor Information Fill Table from Data Set

View Data Plot Outputs

• Factor Information

List of all available project expressions, which can be added to the data set for display
and evaluation.

• View Data

Displays the data in a table. Individual entries can be altered. Columns of data can be
assigned to CAGE expressions.

• Plot Outputs

Displays models and features evaluated at the data points (of the data set).
• Fill Table from Data Set

This mode allows you to fill tables by reference to experimental data.

9 Data Sets

9-2



 Use Data Sets Views

9-3



Set Up Data Sets

In this section...
“How to Set Up Data Sets” on page 9-4
“Importing Experimental Data from File” on page 9-5
“Importing Data from the Model Browser” on page 9-7
“Importing Data from a Table in Your Session” on page 9-8
“Merging Data Sets” on page 9-8
“Specifying the Factors Manually” on page 9-9
“Creating a Factor from the Error Between Factors” on page 9-12

How to Set Up Data Sets

The Data Sets view displays the strategies, tables, and models, etc., as a list of factors in
the default Data Set Factors view. You can also display the same factors as columns in
a grid, with all factors displayed as columns in the list, by selecting the View Data
toolbar button (  ). The data set works over a grid of values, which is not necessarily
the same as the normalizers of any included tables in the data set.

You have to set the input factors and their values to define the grid in the data set. You
can do this in one of these ways:

• Import experimental data from file. See “Importing Experimental Data from File” on
page 9-5.

• Import data from the Model Browser. See “Importing Data from the Model Browser”
on page 9-7.

• Import the values from a table in your CAGE session. See “Importing Data from a
Table in Your Session” on page 9-8.

• Merge data sets that share the same factors. See “Merging Data Sets” on page 9-8.
• Specify the factors and their values manually. See “Specifying the Factors Manually”

on page 9-9.

The next sections describe each of these in detail.

9 Data Sets

9-4



Importing Experimental Data from File

You can import experimental data to a data set, either to validate a calibration or to use
it as the basis for a calibration.

You can import data that is stored in the following formats:

• Microsoft Excel spreadsheets
• Comma-separated value files
• MAT-files
• Data in the Model Browser

Data Format for Importing from Excel or Comma-Separated Value

When you import data from either a Microsoft Excel spreadsheet or from a comma-
separated value file, you must ensure that the data is organized in the following manner:

• The first row can either be column headers (text) or entries (numbers).
• The second row can be a row of units (text), as for importing into the Model Browser.

CAGE ignores this row.
• All the other row and column entries must be numbers.

Note The Data Editor can create a tailor-made Excel sheet for you to fill with data and
then import. This sheet will be in the format the Model-Based Calibration Toolbox
product expects to import data. See “Tailor-Made Excel Sheets” in the Model-Based
Calibration Toolbox Model Browser User's Guide.

Importing from MAT-files

When you import from a MAT-file, you must ensure that the file contains numbers only,
that is, a double array.

To import experimental data:

1 Select File > New > Data Set to create an empty data set.
2 Select File > Import > Data > File.

 Set Up Data Sets

9-5



3 In the file browser, select the correct file to import. This opens the Loading Data
from MAT-filename dialog. Use this dialog to select the data in the MAT file you
wish to import into the data set. Click OK.

This opens the Data Set Import Wizard.
4 Discard any columns of data you do not want to import by selecting the column and

clicking the button shown.

5 Click Next.

The following screen asks you to associate variables in your project with data
columns in the data.

6 Highlight the variable in the Project Assignments column and the corresponding
data column in the Data Column, then click the assign button, shown.

7 Repeat step 5 until you are satisfied that you have associated all the variables and
data columns. Any unassigned data columns are treated as output factors.

9 Data Sets

9-6



8 Click Finish to close the dialog box.

CAGE imports your data and you can view your data set.

Importing Data from the Model Browser
You can import data sets from a project currently loaded in the Model Browser.

To import data from the Model Browser:

1 Select File > New > Data Set to create an empty data set.
2 Select File > Import > Data > Model Browser.
3 In the dialog box, select the correct data set in the current Model Browser project to

import.

The Data Set Import Wizard opens.

 Set Up Data Sets

9-7



4 Select the data columns that you want to import into the data set. Exclude any
columns of data you do not want to import. To so, select the column and click the
button shown.

If your project is empty, you can click OK to import your selections. Otherwise, click
Next.

5 On the next screen, highlight variables in the Project Assignments column to
associate variables in your project with data columns in the data. Then, highlight the
corresponding data column under Data Column, and click the assign button.

6 Click Finish to close the wizard and import the data.

See also “Export Data Sets” on page 9-32.

Importing Data from a Table in Your Session

To import data from a table:

1 Select Data > Import > Import from Table.

If your data set already contains data, a dialog box asks whether you want to Fill
the data set from the table or Overwrite the data set from the table.

• Select Fill to use the table values to fill the factors in your data set.
• Select Overwrite to disregard all factors in your data set and fill the data set

with the input and output factors from the table.

A dialog box opens.
2 Select the correct table from your session to import, and click OK.

When you have imported your data, you can view the data set.

Merging Data Sets

To merge another data set in your project with the currently selected data set:

1 Select Data -> Import -> Merge Data Set.

9 Data Sets

9-8



The Merge Data Sets dialog box appears containing a list of all data sets in your
project.

2 Select the data set you want to merge with the current data set, and click OK.

Columns of inputs and external data are appended to columns with names that
match in the current data set.

Outputs (models) and any other columns without matching names are not merged.

The values for any unmatched columns are set to the set point if possible, or zero
otherwise.

Specifying the Factors Manually
1 Select the Data Set view by clicking the large Data Sets button in the Data

Objects pane.
2 Add a data set to the project by selecting File -> New -> Data Set.
3 Select the factors. (See “Selecting the Factors” on page 9-9.)
4 Build the grid. (See “Manually Setting Values of the Input Variables” on page 9-11.)

After you complete these steps you can view the data set.

This section describes

• “Selecting the Factors” on page 9-9
• “Manually Setting Values of the Input Variables” on page 9-11

Selecting the Factors

Clicking the Factors View button in the toolbar (  ). This displays two list boxes.

• The upper list shows all factors within the data set. You can sort factors by clicking
the column headings.

• The lower list shows CAGE project expressions.

 Set Up Data Sets

9-9



Factors in the current data set

Factors in the current data set

You can use this view to add factors to or remove factors from the data set.

To add a factor to a data set,

• Right-click a factor and select Add to Data Set from the context menu.
• Alternatively, select the factor or factors that you want to add to the data set from the

list in the lower Project Expressions pane, then select Data > Factors > Add to
Data Set.

9 Data Sets

9-10



To make multiple selections, use the standard Shift+click or Ctrl+click.

To remove a factor from a data set,

1 Select the factor or factors that you want to remove from the data set.
2 Right-click and select Remove from Data Set, or select the menu item Data ->

Factors -> Remove From Data Set.

Note Links between the two lists are always preserved, so clicking load in the upper
list also selects load in the lower list. In other words, you can copy or remove from
either list and the relevant results appear in both.

Manually Setting Values of the Input Variables

Clicking the Build Grid toolbar button (  ) or selecting Data -> Build Grid enables
you to set the values of the input variables for the data set.

To build a full factorial grid,

1 Select Data -> Build Grid.
2 Select the factor that you want to define a grid for.
3 Set the grid for the factor.

To set a grid of 5, 10, 15, 20, 25, 30, input the following: 5:5:30, where the first
number is the minimum, the second is the step size, and the last number is the
maximum value.

4 Check the size of the data set in the pane. The current size reported at the bottom of
the dialog is the size if you click Cancel to leave the data set unchanged. The
projected size is created if you click OK. In the following example, the projected size
of 45 you can see is obtained by multiplying the number of points for each factor
with a grid (in this case, 3 * 5 * 3).

5 Select the next factor that you want to define a grid for.
6 When you have set the grids for all the factors, click OK.

 Set Up Data Sets

9-11



1. Highlight the input factor.

2. Set the range for the factor. 3. Check the size of the data set.

Creating a Factor from the Error Between Factors

To create a factor that is the difference between two other factors,

1 Highlight the two factors, using Ctrl+click or Shift+click.
2 Select Create Error from the right-click menu on either column head.

This creates a new factor that is the difference between the two other factors.

9 Data Sets

9-12



View Data in a Table

Click the View Data button ( ) in the toolbar or select View -> Data to display the
data in tabular form and a list of the current items in the project.

Note that this view is only enabled if you have a grid of points at which to evaluate and
display the models and variables. This grid is not necessarily derived from the
normalizers of any tables included in the data set. You can set the grid by importing
experimental or table data, or by using the Build Grid toolbar button ( ). See “Set Up
Data Sets” on page 9-4.

Inputs to the selected column,
colored cream

Input that is not an input
to the selected column

Selected column

Columns are color coded by factor type:

• Input factors are white.

 View Data in a Table

9-13



• Output factors are gray.

Selecting an output column highlights the input columns associated with it by turning
the header cells cream.

Standard editing facilities are available. Double-click an input cell to edit the value.

Cut and paste using the desktop clipboard. Cells, columns, and rows can be copied
directly to and from other applications (for example, Excel).

Note You can only edit input values, not output values.

9 Data Sets

9-14



Plot Outputs
Use this to plot the outputs of your data sets.

To view a plot,

1
Select View > Plot or click the  toolbar button.

2 Select an expression from the list to view.

A plot of the selected output factor appears in the top pane.

3 Use the pop-up menus below the plot to change the factors displayed.

To zoom in on an area of interest,

• Press both mouse buttons simultaneously and drag a rectangle; double-click the
graph to return to full size.

 Plot Outputs

9-15



Plotting Multiple Selections

You can plot a multiple selection by using standard Ctrl+click and Shift+click
operations.

A legend at the top of the screen displays the key to the graph.

When exactly two items are displayed, further plot options are available:

• Plot the first item against the second item (X-Y Selection).
• Display the error using one of the following options:

• Error
• Absolute error

9 Data Sets

9-16



• Relative error (%)
• Absolute relative error (%)

 Plot Outputs

9-17



Use Color to Display Information
You can use the plot view to display more information by coloring the plots.

1 Select View > Plot or click .
2 Highlight the correct expression in the Output Expressions (Project and Data

Set) pane.
3 Select Color by Value from the right-click menu of the plot.
4 Select from the pop-up menu the variable you want to use to color the plot.

9 Data Sets

9-18



1. Click Plot Outputs. 3. Select Color by Value
from the right-click menu.

2. Select the expression. 4. Select the correct variable.

 Use Color to Display Information

9-19



In the following figure, you can see

• A plot of the Sum vs Data Set Point (this is the strategy from a torque feature
calibration).

• The points are colored by load.
• For this example it can be seen that, in general, the higher the load, the higher the

value of torque.

Restricting the Color

You might be interested in only part of the display; for example, you might only be
interested in points with a low engine speed. The various display options enable you to
color only the points that you are interested in.

To restrict the color,

1 Select the Limit range box, or right-click the plot and select Limit Color Range.

Three limit markers appear in the color bar. The colors in the color bar are
compressed within the limit markers. This increases the range of colors over the
range you are interested in (between the limits), making it easier to see the
distribution of points.

2 Adjust the maximum, midpoint, and minimum of the range by dragging the limit
markers on the color bar.

9 Data Sets

9-20



3 Examine the data points and those that are outside the range.

Use the right-click menu to alter the view of the points outside the range:

• Select Exclude to remove all points outside the limits from the display.
• Select Color Outside Limits to display all points in color, including those outside

the limits. Points outside the limits are still colored, but only dark red or dark blue,
depending on which end of the range they are.

• Select No Color Outside Limits to display the points as in the example shown.
Points outside the limits are plotted as empty circles.

A point outside the range 1. Select the Limit range box.

2. Adjust the range.

 Use Color to Display Information

9-21



Link Factors in a Data Set
A factor can be linked to another. The factor then takes on the values of that other factor,
overwriting the original values.

For example, you might want to link a variable spark with a model for maximum brake
torque (MBT) to evaluate a torque model.

To link two factors,

1 Select Data -> Links. This opens a dialog box.
2 Select the data set factor that you want to overwrite.

CAGE generates a list of factors that you could possibly link to the selected factor.
(For example, you cannot link to a factor that depends on the selected factor.)

3 Select the factor that you want to link the selected factor with.
4

Click  to link the two factors.

9 Data Sets

9-22



2. Select the factor that
you want to overwrite.

4. Click here to
link the factors.

2. Select the factor that
you want to link it with.

CAGE then overwrites the data set factor with the link.

To break a link and return to normal evaluation, click .

Once all the links have been created or broken as you want, click OK to exit the dialog.

See also:“Set Up Data Sets” on page 9-4

 Link Factors in a Data Set

9-23



Assign Columns of Data
To analyze imported data, you need to assign columns of data to input factors in the
CAGE data set.

Data can be imported into a data set from outside CAGE, for example, from an engine
test cell. In many cases, this data contains a set of input points (or operating points) and
the values of important measurable variables at those points. To compare data like this
with models (and/or tables) in a CAGE data set, you have to assign columns of the data
to the corresponding input factors in the data set.

To assign data,

1 Select Data > Assign.
2 In the dialog box, highlight the column that you want to assign and the variable that

you want to assign it to.
3

Click  to assign.

To unassign data,

1 Select Data > Assign.
2 In the dialog box, highlight the variable that you want to unassign.
3

Click  to unassign.

Note Assigning data to a CAGE expression overwrites that expression in the data
set. This does not affect the expression in the other parts of the CAGE project.

9 Data Sets

9-24



Manipulate Models in Data Set View
A model in a data set can be treated as either an input or an output. This is particularly
useful when a model is used as an input to another model and you want to view specific
values of the input model. For example, linking a model of MBT Spark to a Spark model
allows the evaluation of a TQ model at MBT.

To change a model to an input,

1 Highlight the desired model in either the factor view or the table view.
2 Select Treat as Input from the right-click menu.

To revert a model to an output,

1 Highlight the desired model in either the factor view or the table view.
2 Select Treat as Output from the right-click menu.

 Manipulate Models in Data Set View

9-25



Fill Tables from Experimental Data
In this section...
“How to Fill Tables from Experimental Data” on page 9-26
“Creating Rules” on page 9-29

How to Fill Tables from Experimental Data

Any table in the project whose axes (normalizers) exist as factors in the data set can be
filled from imported experimental data (or any data set, such as optimization output).

CAGE extrapolates the values of the experimental data over the range of your table.
Then it fills the table by selecting the values of the extrapolation at your breakpoints.

To fill the table with values based on the experimental data,

1 To view the Table Filler display, click  (Fill Table From Data Set) in the toolbar;
or select View > Table Filler.

You can use this display to specify the table you want to fill and the factor you want
to use to fill it.

2 In the lower pane, select the table from the Table to fill list. This is the table that
you want to fill.

3 Select the experimental data from the Factor to fill table list. This is the data that
you want to use to fill the table.

For example, see the following display.

9 Data Sets

9-26



The upper pane displays the breakpoints of your table as crosses and the operating
points where there is data as blue dots. Data sets display the points in the
experimental data, not the values at the breakpoints. You can inspect the spread of
the data compared to the breakpoints of your table before you fill the table.

4 To view the table after it is filled, make sure the Show table history after fill box
at the bottom left is selected. This is selected by default.

5 To fill the table, click Fill Table.

If the Show table history after fill box is selected, the History dialog box opens,
similar to the one shown.

 Fill Tables from Experimental Data

9-27



6 Click Close to close the History dialog box and return you to the Table Filler
display.

7 To view the graph of your table, select Data > Plot > Surface.

9 Data Sets

9-28



This display shows the table filled with the experimental points overlaid as purple dots.

Creating Rules

You can ignore points in the data set when you fill your lookup table.

By defining a region to include or exclude such points, you create a rule for the table
filling.

For example, you might want to fill a lookup table that has a range of operating points
that is smaller than the range of the experimental data.

To ignore points in the data set,

1 Select Data > Plot > Data Set. This displays the view of where the breakpoints lie
in relation to the experimental data.

2 To define the region that you want to include, left-click and drag the plot. For
example, see the following display.

This region defines a rule in the Table filling rules pane.

 Fill Tables from Experimental Data

9-29



3 To fill the table based on an extrapolation over these data points only, click Fill
Table.

The display of the surface now shows the table filled only by reference to the data points
that are included in the range of the table.

You can now review your data set using the options in the View and Plot panes of Data
Sets.

You can add any number of rules to follow when filling tables. For example, you might be
aware that a particular test run included in the chosen area is not good data. You can
click and drag to enclose any chosen point, then right-click that rule (in the Table filling
rules pane) and select Exclude Points. You can set any number of rules to make sure
you fill the table by using just the points you are interested in.

Right-Click Options

Select Data -> Table Fill to reach the following options:

• Enable Rule: Apply the rule to the data.
• Disable Rule: Do not apply the rule, but also do not delete it.
• Exclude Points: Do not include these points in table filling.
• Include Points: Include points in table filling.
• Promote Rule: Change order of rules.
• Demote Rule: Change order of rules.

9 Data Sets

9-30



• Clear Rule: Delete this rule.

You can use these options to enable an iterative process. You can fine-tune the selection
of data points: try different selections of data to fill your tables, check the results, then
reuse the same rules for the same or different tables.

 Fill Tables from Experimental Data

9-31



Export Data Sets
In this section...
“Exporting Data to the Model Browser” on page 9-32
“Exporting Data to File” on page 9-32

Exporting Data to the Model Browser

When viewing a data set, you can export the data to the Model Browser. The Model
Browser must be open.

Select File > Export > Data > Model Browser.

The Model Browser displays the data set in the Data Sets list at the Project node.

Exporting Data to File

When viewing a data set, you can export the data to a comma-separated value file.

• Select File > Export > Data > File.
• In the file browser, specify the file name and location and click Save.

9 Data Sets

9-32



Surface Viewer

This section includes the following topics:

• “The Surface Viewer in CAGE” on page 10-2
• “Viewing a Model or Strategy” on page 10-3
• “Setting Variable Ranges” on page 10-5
• “Displaying the Model or Feature” on page 10-7
• “Making Movies” on page 10-14
• “Displaying Errors” on page 10-16
• “Printing and Exporting the Display” on page 10-18

10



The Surface Viewer in CAGE
The Surface Viewer enables you to view the model or the feature as it varies over the
ranges of its variables. You can automatically step through values of a variable, to make
a movie of the behavior of the feature or model. You can view the model or feature using
a variety of plot types.

Note The Surface Viewer is only available when you are viewing models, tradeoffs or
the feature node of a feature calibration.

Following is an example of the Surface Viewer displays.

10 Surface Viewer

10-2



Viewing a Model or Strategy

To access the surface viewer, select Tools > Surface Viewer or click  on the toolbar.

These are the main steps to view the model or feature using the Surface Viewer dialog
box:

1 The model or feature selected when you open the Surface Viewer is displayed in
the plot. If you have more than one model or feature, select what to display from the
top Items list.

You can multiselect up to 4 items at once using Ctrl+click (the plot view on the
right divides into a maximum of 4 plots). All the settings below the Items list apply
to all plots. If one of the features selected in the Items list does not contain the
appropriate input variables you select to plot, there will be no plot for that item.

2 Select the ranges for the variables. (See “Setting Variable Ranges” on page 10-5.)
3 Choose the plot type to display. (See “Displaying the Model or Feature” on page 10-

7.). You can view surfaces, contour plots, single and multilines, movies, tables, and
single values.

For example, as you view a feature, you can view either the strategy, the model
associated with that feature, the error between the model and the strategy, or the
prediction error if the model was imported from the Model Browser. You can also use
one of these factors to shade the surface formed by one of the other factors, and you
can select any two factors to display simultaneously as two surfaces.

• You can make a movie. (See “Making Movies” on page 10-14). This enables you to
view the model or feature as it steps through several values of a variable. For
example, if you want to view a feature calibrated for maximum brake torque (MBT) as
it varies over exhaust gas recycling (EGR), you can make a movie of the feature.

• You can also print or export the display. (See “Printing and Exporting the Display” on
page 10-18.)

 Viewing a Model or Strategy

10-3



Models or features in the
project and their inputs

The model in the feature, shaded by the error
(in this case)

3. Plot controls Variable ranges Axes controls

10 Surface Viewer

10-4



Setting Variable Ranges
The Surface Viewer does not work over continuous ranges, only at discrete points. You
must specify, for the model or feature, the discrete points you want to include in the
display. You can display models or features over a range of points. To edit the displayed
values of a variable, double-click in the value box for the appropriate variable.

• Variables not being used for the axes plotted have a single value for that plot; to edit
the displayed value for these variables you can type directly into the edit box after
double-clicking.

• For variables specified by the axes drop-down menus, the value box displays the
range over which that variable is plotted and the number of points plotted across that
range. To edit both the range and the number of points, double-click the value box.
The Value Editor opens.

Here you can indicate the points to include in the display. You can specify

• The minimum and maximum values and the number of points across that range by
choosing Uniform Vector and typing in the edit boxes Min, Max, and Number of
points.

• Each discrete point at which you want to evaluate the model (or feature), by choosing
Freeform vector, and then typing the required values.

For example, if you want to display the variable x at 0, 1, 7, 30, and 50, enter the
following in the Freeform vector edit box, separated by tabs or spaces:
0 1 7 30 50

Click OK to apply your changes to the plot.

When you alter the variables, you can select whether you want the display to update
automatically or not. You can toggle the automatic update on and off by selecting Tools
> Auto-Evaluate. When you want to update the display, select Tools > Evaluate Now .
Both of these options have equivalent toolbar buttons:

 Setting Variable Ranges

10-5



Displaying Point-by-Point Models in the Surface Viewer

When you are displaying a point-by-point model, you can select the operating point to
display. When you are using point-by-point models, these are the points of interest you
want to display.

To select the operating point to display in the Surface Viewer,

1 Select Tools > Select Operating Point (or the equivalent toolbar button). The
Model Operating Points dialog box opens.

2 Select the operating point you want to display and click OK.

Surface Viewer snaps the display automatically to the selected point-by-point model
operating point. When you select an operating point, Surface Viewer uses the model
ranges for that operating point to set the local inputs (ranges and midpoints as
applicable).

10 Surface Viewer

10-6



Displaying the Model or Feature

In this section...
“Using Display Options” on page 10-7
“Surface” on page 10-8
“Contour” on page 10-10
“Line” on page 10-11
“Single Value” on page 10-11
“Multiline” on page 10-12
“Table” on page 10-12

Using Display Options

The Plot Type drop-down menu gives the options on how to display the model or
feature, as shown below.

Use the options in this menu to display the model or feature as described in the following
sections.

For information about the Movie option, see “Making Movies” on page 10-14.

When plotting multiple models or features, it can be useful to link axes rotation or use
common Y- or Z- ranges. Use the display options (toolbar button or View menu).

In any of these views you can select View > Statistics, or click the equivalent toolbar
button. This opens a dialog box with a list of the summary statistics (mean, standard
deviation, maximum, or minimum) of your currently selected model, strategy, or error for
the current display.

 Displaying the Model or Feature

10-7



For the plots (not movie, single value or tables) you can use the File menu or toolbar to
print, copy to clipboard or print to figure. You can also export plot values to CSV file. See
“Printing and Exporting the Display” on page 10-18.

You can alter display options for all plots (not value or tables) with the View menu or
toolbar button.

Surface

You can rotate the surface plots by left-clicking and dragging.

If you are using the surface viewer to view a feature, you can choose the following options
to display:

• Model
• Strategy
• Prediction Error
• Error (between the model and the strategy)

10 Surface Viewer

10-8



When viewing models there are no strategy options. You can choose these options from
the drop-down menus for Surface 1 Height, Surface 1 Shading, and Surface 2
Height, as illustrated below.

You can view any of these options alone as a primary surface (by leaving the last two
options set to None). You can add a second option to shade the primary surface, for
example to color your model surface with the error between the model and the strategy,
to highlight problem areas.

When you choose to shade a primary surface, a color bar appears to the right of the plot
to show you the scale. You can change the maximum and minimum values of the shading
factor by typing in the edit boxes above and below the color bar. You can see an example
like this in “Viewing a Model or Strategy” on page 10-3.

You can add a second surface to display any two of the options simultaneously, for
example, your model and your strategy.

If you have a boundary model, you can display the boundary by selecting the check box.

Select the Inputs to plot from the X-axis and Y-axis drop-down lists, and specify the
ranges of inputs in Value controls. See “Setting Variable Ranges” on page 10-5.

Note For information on the two different error displays available using the surface
view, see the next section, “Displaying Errors” on page 10-16.

 Displaying the Model or Feature

10-9



Contour

You can specify where you want contours by clicking Set Contour Values. Use the
check box to return to automatic contour value selection. You can also control number of
contours, filling and labels in the display options (toolbar or View menu).

You can enable Cursor Mode (use the View menu or toolbar button) and then click on
the plot lines to display the values at a point (plotted with an X). The values are shown in
the status bar.

10 Surface Viewer

10-10



Line

A line plot - you can display up to three different lines (strategy, model, prediction error
and error between the model and strategy). Use the Line drop-down lists to select what
to plot. You can select the check box to clip to a boundary if available.

You can enable Cursor Mode (use the View menu or toolbar button) and then click on
the plot lines to display the values at a point (plotted with an X). The values are shown in
the status bar.

Single Value

This displays the value of the model, strategy, prediction error or error at the point you
have specified in the variable value boxes.

 Displaying the Model or Feature

10-11



Multiline

Select the variables to plot from the X-axis and Line colors drop-down menus. Control
the number of lines by altering the Values. You can use the check box to clip to a
boundary if available.

You can enable Cursor Mode (use the View menu or toolbar button) and then click on
the plot lines to display the values at a point (plotted with an X). The values are shown in
the status bar.

Table

You can select a 2-D or 1-D table to display. Select the check box to mark cells outside
the boundary.

10 Surface Viewer

10-12



Choose variables to be the axes of your table and set the range and number of points in
the same way as for all the plots. Set single values for any other variables. For more
information, see “Setting Variable Ranges” on page 10-5.

For 2–D tables you can use the Cell values drop-down menu to select whether to display
the model output or the prediction error.

For 1-D tables you can select what to display in columns 1, 2 and 3: Model, Prediction
error, Strategy or Error (strategy – model) (for features), or choose None for 2
and 3 to display only a single column. When viewing models there are no strategy
options.

 Displaying the Model or Feature

10-13



Making Movies
Choose Movie from the Plot Type drop-down menu in the Data to Plot pane.

The movie option allows you to see an evaluation over two variables at successive values
of a third variable. For example, a model of torque might have speed (N), load (L), and
air/fuel ratio (A) as inputs.

The movie option allows you to view how the torque model behaves over the ranges of
speed and load for successive values of air/fuel ratio.

1 Select three variables from the X-axis, Y-axis, and Time drop-down menus, to
indicate which variable you want to display. You can view the model surface plotted
across the range of two variables, and define the third variable as "time" to see the
model surface change across the third variable's range.

2 Define the variable ranges using the Value boxes for the inputs. See “Setting
Variable Ranges” on page 10-5.

3 Select the check box to mark boundaries if available.
4 Click Play.

10 Surface Viewer

10-14



5 You can click the buttons at each end of the progress bar under the plot to step
through the movie, or click anywhere along the bar (or click and drag the blue
pointer) to display a particular point in the movie. You can rotate the plot (including
during play).

 Making Movies

10-15



Displaying Errors
In this section...
“Introducing Error Displays” on page 10-16
“Feature Error Data” on page 10-16
“Prediction Error Data” on page 10-16

Introducing Error Displays

There are two different error displays available in the surface display options for primary
and secondary surfaces and surface shading:

• Error between the model and the strategy (See “Feature Error Data” on page 10-16
following.)

• Prediction error of the model (See “Prediction Error Data” on page 10-16.)

Feature Error Data

When you are viewing a feature, this displays the error between the strategy and the
model.

To display the error, select Error (strategy-model) from the drop-down menu for
primary or secondary surface. You can also choose to shade your primary surface with
the error by using the Surface 1 Shading menu.

To view the error statistics, select View > Statistics. This opens a dialog box with a list
of the summary statistics for the error between model or feature.

Prediction Error Data

If the model is imported from the Model Browser, it is possible to display the prediction
error (PE) data.

Prediction Error Variance (PEV) is a very useful way to investigate the predictive
capability of your model. It gives a measure of the precision of a model's predictions. PEV
can also be examined in the Model Browser, both in the Prediction Error Variance
Viewer and to shade surfaces in the Model Selection and Model Evaluation views.

10 Surface Viewer

10-16



Here you can examine the PEV of designs and models. When you export the model to
CAGE you can see this data in the Surface Viewer in the Prediction Error option.
See the Model Browser GUI Reference and Technical Documents for details about the
calculation of Prediction Error.

Viewing the Prediction Error

Select Prediction Error from the drop-down display menus for primary or secondary
surfaces. You can also choose Prediction Error to shade your primary surface. As
with all other plots, you can view the statistics for the Prediction Error displayed by
selecting View > Statistics. The mean, standard deviation, and so on are calculated over
the range specified in the variable value boxes.

 Displaying Errors

10-17



Printing and Exporting the Display
To print the display, select File -> Print, or you can select Print to Figure. Selecting
File > Copy to Clipboard copies the plot image to the clipboard. This is useful if you
want to place plot images into other applications. These print options also have
equivalent toolbar buttons.

You can also export the display data to a comma-separated variable file.

To export the display, select File > Export to CSV. The currently selected option is
exported. The primary input to the first plot is exported (this is the top left if you have
multiple plots). The output is the values at the grid of points specified by the current
ranges and input values. The inputs for shading and secondary surfaces are not exported.

Note that you cannot print table plots, but you can click and drag to select cells and press
Ctrl-C to copy the values to the clipboard, or you can export them to CSV files and then
load them into Excel.

10 Surface Viewer

10-18


